Skip to main content
Log in

Stepwise unfolding of collapsed polymers

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Motivated by recent experimental data on DNA stretching in presence of polyvalent counterions, we study the force-induced unfolding of a homopolymer on and off lattice. In the fixed force ensemble the globule unravels via a series of steps due to surface effects which play an important role for finite-size chains. This holds both for flexible and stiff polymers. We discuss in a qualitative way how this result may impact on the interpretation of DNA stretching experiments showing peaks in the characteristic curves, by extracting from the raw data the corresponding elongation-versus-force characteristic curves. Furthermore, approximate analytical and numerical calculations, valid in a quasi-equilibrium fixed stretch ensemble, and if the initial low-temperature state is ordered in a spool, show that the average force versus elongation displays peaks related to the geometry of the initial configuration. We finally argue how the proposed mechanisms identified for the arising of peaks may couple in the experiments, and comment on the role of dynamic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bustamante, J.C. Macosko, G.J.L. Wuite, Nat. Rev. Mol. Cell Biol. 1, 130 (2000).

    Article  Google Scholar 

  2. R. Lavery, A. Lebrun, J.F. Allemand, D. Bensimon, V. Croquette, J. Phys.: Condens. Matter 14, R383 (2002).

  3. C.G. Baumann et al. , Biophys. J. 78, 1965 (2000).

    Google Scholar 

  4. Y. Murayama, M. Sano, J. Phys. Soc. Jpn. 70, 345 (2001).

    Google Scholar 

  5. Y. Murayama, Y. Sakamaki, M. Sano, Phys. Rev. Lett. 90, 018102 (2003).

    Article  Google Scholar 

  6. B.J. Haupt, T.J. Senden, E.M. Sevick, Langmuir 18, 2174 (2002).

    Article  Google Scholar 

  7. A. Halperin, E. Zhulina, Europhys. Lett. 15, 417 (1991).

    Google Scholar 

  8. I.S. Aranson, L.S. Tsimring, Europhys. Lett. 62, 848 (2003).

    Article  Google Scholar 

  9. T. Frisch, A. Verga, Phys. Rev. E 66, 041807 (2002).

    Article  Google Scholar 

  10. M. Cieplak, T.X. Hoang, M.O. Robbins, Proteins 49, 104 (2002).

    Article  Google Scholar 

  11. A. Rosa, T.X. Hoang, D. Marenduzzo, A. Maritan, Macromolecules 36, 10095 (2003).

    Article  Google Scholar 

  12. P. Grassberger, H.P. Hsu, Phys. Rev. E 65, 031807 (2002).

    Article  Google Scholar 

  13. C. Vanderzande, Lattice Models of Polymers (Cambridge University Press, 1998).

  14. For the case with no interaction see, e.g., R.M. Neumann, Phys. Rev. A 31, 3516 (1985).

    Article  Google Scholar 

  15. D. Marenduzzo, A. Maritan, A. Rosa, F. Seno, Phys. Rev. Lett. 90, 088301 (2003).

    Article  Google Scholar 

  16. M.C. Tesi, E.J. J. van Rensburg, E. Orlandini, S.G. Whittington, J. Stat. Phys. 82, 155 (1996).

    MathSciNet  MATH  Google Scholar 

  17. A. Montesi, M. Pasquali, F.C. MacKintosh, condmat/0308356.

  18. C. Bouchiat, M. Mezard, Eur. Phys. J. E 2, 377 (2000).

    Article  Google Scholar 

  19. R.D. Kamien, Rev. Mod. Phys. 74, 953 (2002).

    Article  Google Scholar 

  20. S.M. Bhattacharjee, D. Marenduzzo, J. Phys. A 35, L349 (2002).

  21. H. Wada, Y. Murayama, M. Sano, Phys. Rev. E 66, 061912 (2002).

    Article  Google Scholar 

  22. I.M. Kulic, H. Schiessel, Phys. Rev. Lett. 92, 228101 (2004).

    Article  Google Scholar 

  23. I.R. Cooke, D.R. M. Williams, Europhys. Lett. 64, 267 (2003).

    Article  Google Scholar 

  24. A.F. Oberhauser et al. , Proc. Natl. Acad. Sci. USA 98, 468 (2001).

    Article  Google Scholar 

  25. O. Braun, A. Hanke, U. Seifert, cond-mat/0402496.

  26. T.A. Vilgis, A. Johner, J.F. Joanny, Eur. Phys. J. E 2, 289 (2000); M.N. Tamashiro, H. Schiessel, Macromolecules 33, 5263 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Marenduzzo.

Additional information

Received: 5 May 2004, Published online: 1 October 2004

PACS:

82.35.Lr Physical properties of polymers - 87.15.-v Biomolecules: structure and physical properties - 36.20.Ey Conformation (statistics and dynamics)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marenduzzo, D., Maritan, A., Rosa, A. et al. Stepwise unfolding of collapsed polymers. Eur. Phys. J. E 15, 83–93 (2004). https://doi.org/10.1140/epje/i2004-10039-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10039-7

Keywords

Navigation