Skip to main content
Log in

The effect of electrostatic force on the evolution of sand saltation cloud

  • Regular Articles
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In a wind-blown sand layer, it has been found that wind transport of particles is always associated with separation of electric charge. This electrification in turn produces some electrostatic forces in addition to the gravitational and fluid friction forces that affect the movement of saltating sand particles, further, the wind-blown sand saltation. To evaluate this effect quantitatively, this paper presents a simulation of evolution of wind-blown sand grains after the electrostatic forces exerted on the grains are taken into account in the wind feedback mechanism of wind-blown saltation. That is, the coupling interaction between the wind flow and the saltating sand particles is employed in the simulation to the non-stationary wind and sand flows when considering fluid drag, gravitation, and a kind of electrostatic force generated from a distribution of electric field changing with time in the evolution process of the sand saltation. On the basis of the proposed simulation model, a numerical program is given to perform the simulation of this dynamic process and some characteristic quantities, e.g., duration of the system to reach the steady state, and curves of the saltating grain number, grain transport rate, mass-flux profile, and wind profile varying with time during the non-stationary evolution are displayed. The obtained numerical results exhibit that the electrostatic force is closely related to the average charge-to-mass ratio of sand particles and has obvious influence on these characteristic quantities. The obtained results also show that the duration of the system to reach the steady state, the sand transport rate and the mass flux profile coincide well with experimental results by Shao and Raupach (1992) when the average charge-to-mass ratio of sand particles is 60 μC/kg for the sand particles with average diameter of 0.25 mm. When the average charge-to-mass ratios of sand particles are taken as some other certain values, the calculation results still show that the mass flux profiles are well in agreement with the experimental data by Rasmussen and Mikkelsen (1998) for another category of sand particles, which tell us that the electrostatic force is one of main factors that have to be considered in the research of mechanism of wind-blown sand saltation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R.A. Bagnold, The physics of blown sand and desert dunes (London, Methuen, 1941)

  • P.R. Owen, J. Fluid Mech. 20, 225 (1964)

    Article  ADS  MATH  Google Scholar 

  • R.S. Anderson, P.K. Haff, Science 241, 820 (1988)

    Article  ADS  Google Scholar 

  • R.S. Anderson, M. Sorensen, B.B. Willets, A review of recent progress in our understanding of Aeolian sediment transport, edited by Barndorff-Nielsen et al., International Workshop on the Physica of Blown Sand: Acta Mechanica, Suppl. 1 (1991)

  • Y. Shao, Physics and modeling of wind erosion (Kluwer Academic Publishers, Boston, 2000)

  • M. Sorensen, Geomorphology 59, 53 (2004)

    Article  ADS  Google Scholar 

  • I.K. McEwan, B.J. Befcoate, B.B. Willetts, Sedimentology 46, 407 (1999)

    Article  Google Scholar 

  • P.J. Spies, I.K. McEwan, Earth Surface Processes and Landforms 25, 437 (2000)

    Article  Google Scholar 

  • I.K. McEwan, B.B. Willetts, Acta Mech., Suppl. 1, 53 (1991)

    Google Scholar 

  • I.K. McEwan, B.B. Willetts, J. Fluid Mech. 252, 99 (1993)

    Article  ADS  Google Scholar 

  • Y. Shao, A. Li, Boundary-Layer Meteorol. 91, 199 (1999)

    Article  ADS  Google Scholar 

  • P.J. Spies, I.K. McEwan, G.R. Butterfield, Earth Surface Processes and Landforms 25, 505 (2000)

    Article  Google Scholar 

  • B.R. White, J.C. Schulz, J. Fluid Mech. 81, 497 (1977)

    Article  ADS  Google Scholar 

  • Y. Shao, M.R. Raupach, J. Geophys. Res. 98, 12719 (1993)

    Article  ADS  Google Scholar 

  • D.S. Schmidt, A.S. Schmidt, J.D. Dent, J. Geophys. Res. 103, 8997 (1998)

    Article  ADS  Google Scholar 

  • I. Livingstone, A. Warren, Aeolian Geomorphology: An Introduction (Addison Wesley Lonman Limited, London, 1996), p. 211

  • R.S. Anderson, P.K. Haff, Wind modification and bed response during saltation of sand in air, edited by Barndorff-Nielsen et al.: International Workshop on the Physics of Blown Sand: Acta Mechanica, Suppl. 1, 21 (1991)

    Article  Google Scholar 

  • R. Greeley, R.A. Leach, prelimilary assessment of the effects of electrostatics on Aeolian process, Rep. Planet. Geol. Program, 1977–1978, NASA TM 79729: 236 (1978)

  • J. Latham, Q. J. R. Meteorol. Soc. 90, 91 (1964)

    Article  ADS  Google Scholar 

  • R. Greeley, J.D. Iversen, Wind as a Geological Proceeding on Earth, Mars, Venus and Titan (Cambridge University Press, London, 1985)

  • X.J. Zheng, N. Huang, Y.H. Zhou, J. Geophys. Res. 108, 4322 (2003)

    Article  Google Scholar 

  • P.E. Shaw, J.N. Chubb, London Ser. A 122, 48 (1929)

    ADS  Google Scholar 

  • E.W.B. Gill, Nature 162, 568 (1948)

    Article  ADS  Google Scholar 

  • W.D. Crozier, J. Geophys. Res. 69, 5427 (1964)

    Article  ADS  Google Scholar 

  • A.K. Kamra, Weather 24, 145 (1969)

    Google Scholar 

  • G.D. Freier, J. Geophys. Res. 65, 3504 (1960)

    Article  ADS  Google Scholar 

  • J.D. Iversen, J. Glaciology 28, 393 (1980)

    ADS  Google Scholar 

  • S.F. Singer, E.H. Walker, Icarus 1, 112 (1962)

    Article  ADS  Google Scholar 

  • B.R. White, B.M. Lacchia, R. Greeley, R.N. Leach, J. Geophys. Res. 102, 25629 (1997)

    Article  ADS  Google Scholar 

  • A.A. Sickafoose, J.E. Colwell, M. Horányi, S. Robertson, J. Geophys. Res. 106 8343 (2001)

    Google Scholar 

  • C.E. Krauss, M. Horányi, S. Robertso, New J. Phys. 5, 70 (2003)

    Article  ADS  Google Scholar 

  • D.V. Nalivkin, Hurricanes, storms and tornadoes, edited by A.A. Balkema (Rotterdam: 1983), p. 580

  • D.K. Davies, S.P. Kendall, J. Electrostatica 13, 81 (1982)

    Article  Google Scholar 

  • S.P. Kanagy II, C.J. Mann, Earth-Science Rev. 36, 181 (1994)

    Article  ADS  Google Scholar 

  • D. Krinsley, R. Greeley, Sediment. Geol. 47, 167 (1986)

    Article  ADS  Google Scholar 

  • E.E. Donaldson, J.T. Dicknson, S.K. Bhattacharya, J. Adhesion 25, 281 (1988)

    Article  Google Scholar 

  • T. Gold, Processes on the lunar surface, edited by Z. Kopal, Z.K. Mikhailov, The Moon (Academic Press, N.Y., 1962), 433

  • R.F. Scott, Soil mechanics considerations in the testing of lunar soil models, edited by J.W. Salibury and P.E. Glaser, The lunar Surface Layer (Academic Press, N.Y., 1964), p. 1

  • J.F. Lindsay, Lunar stratigraphy and Sedimentology, (Elsevier, N.Y., 1976), p. 302

  • C.K. Adams, Nature's electricity, TAB Books, Blue Ridge Summit, PA, 147 (1987)

  • C.R. Buhler, C.I. Calle, A.W. Nowicki, M.L. Ritz, J.G. Mantovani (2004), Results of a wheel electrometer for measuring the triboelectric properties of Martine Regolith. 35th Lunar and Planetary Science Conference, League City, Texas

  • A.A. Mills, Nature 268, 614 (1977)

    Article  ADS  Google Scholar 

  • S. Israelsson, J. Atmos. Terr. Phys. 56, 1551 (1994)

    Article  ADS  Google Scholar 

  • M. Horanyi, G. Lawrence, Phys. Scr. T89, 130 (2001)

  • C.D. Stow, Weather 24, 134 (1969)

    Google Scholar 

  • D.S. Schmidt, J.D. Dent, Ann. Glaciol. 18, 234 (1993)

    ADS  Google Scholar 

  • X.J. Zheng, L.H. He, Y.H. Zhou, J. Geophys. Res. 109, D15208 (2004)

  • R.S. Anderson, B. Hallet, Bull. Geol. Soc. Amer. 97, 523 (1986)

    Article  Google Scholar 

  • M. Sorensen, Estimation of some aeolian saltation transport parameters from transport rate profiles, edited by O.E. Barndorff-Nielsen et al., Proceedings of International Workshop on the Physics of Blown Sand, Memoirs No. 8, Vol. 1. Dept. Theor. Statist., Aarhus Univ., Denmark, 141 (1985)

  • Y. Shao, M.R. Raupach, J. Geophys. Res. 97, 20559 (1992)

    ADS  Google Scholar 

  • J.R. Garrett, The atmospheric boundary layer (London, Cambridge University Press, 1994)

  • K.R. Rasmussen, J.D. Iversen, P. Rautahemio, Geomorphology 17, 19 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  • K.R. Rasmussen, H.E. Mikkelsen, Sedimentology 45, 789 (1998)

    Article  Google Scholar 

  • Z.S. Li, J.R. Ni, Geomorphology 52, 243 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Huang, N. & Zhou, Y. The effect of electrostatic force on the evolution of sand saltation cloud. Eur. Phys. J. E 19, 129–138 (2006). https://doi.org/10.1140/epje/e2006-00020-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/e2006-00020-9

PACS.

Navigation