Skip to main content

Advertisement

Log in

Spatial characteristics of wind-sand flow development under natural wind

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The spatial characteristics of wind-sand flow development are important for the morphological analysis of sand dunes (especially barchan dunes) used for curbing desertification projects. However, in previous studies, results were mostly obtained under the premise of a stable wind field. In this study, natural unsteady wind is accounted for, and the two-dimensional turbulent flow equilibrium differential equation (the N–S equation) is solved by large-eddy simulation method. On the premise that the characteristics of the simulated flow field are consistent with those of natural wind field, a point force model is used to calculate the trajectory of a large number of dust particles. The analysis focuses on the correlation between the development distance of the wind-sand flow, the turbulence characteristics of the wind field, and the particle size of sand. The results show that the saturation length of the unsteady incoming flow is generally shorter than that of the steady incoming flow (The turbulence intensity is equal to 0). Moreover, the overshoot phenomenon is not obvious when the particle size is small, the maximum value of the sand transport rate is generally smaller than that in stable inflow environment, and the position is more forward as the particle size increases. In addition, the saturation length decreases with an increase in turbulence intensity, and the turbulence intensity is different for the sand transport rate after space development is stable. The sand transport rate is not only delayed in time (< 2 s) but also delayed in space (~ 2.4 m).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The program code used is not attached to the manuscript, and if the reader requests it, the author is willing to provide it.

References

  1. Bagnold, R.A.: The Physics of Blown Sand and desert Dunes. Methuen, London (1941)

    Google Scholar 

  2. McKenna Neuman, C., Lancaster, N., Nickling, W.G.: The effect of unsteady winds on sediment transport on the stoss slope of a transverse dune, Silver Peak, NV, USA. Sedimentology 47, 211–226 (2000)

    Article  Google Scholar 

  3. Sauermann, G., Kroy, K., Herrmann, H.J.: A continuum saltation model for sand dunes. Phys. Rev. E 64, 031305 (2001)

    Article  ADS  Google Scholar 

  4. Zheng, X.J.: Mechanics of Wind-blown Sand Movements. Springer, Berlin (2009)

    Book  Google Scholar 

  5. Shao, Y.P.: A similarity theory for saltation and application to Aeolian mass flux. Bound.-Lay. Meteorol. 115, 319–338 (2005)

    Article  ADS  Google Scholar 

  6. Shao, Y.P.: Physics and Modelling of Wind Erosion. Springer, Dordrecht (2008)

    Google Scholar 

  7. Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010)

    Article  ADS  Google Scholar 

  8. Jacob, C., Anderson, W.: Conditionally averaged large-scale motions in the neutral atmospheric boundary layer: insights for aeolian processes. Bound.-Lay. Meteorol. 162, 21–41 (2017)

    Article  ADS  Google Scholar 

  9. Baas, A.C.W., van den Berg, F.: Large-scale particle image velocimetry (LSPIV) of aeolian sand transport patterns. Aeol. Res. 34, 117 (2018)

    Article  Google Scholar 

  10. Wang, P., Feng, S.J., Zheng, X.J., Sung, H.J.: The scale characteristics and formation mechanism of aeolian sand streamers based on large eddy simulation. J. Geophys. Res. Atmos. 124, 11372–11388 (2019)

    Article  ADS  Google Scholar 

  11. Wang, G.H., Zheng, X.J.: Very large scale motions in the atmospheric surface layer: a field investigation. J. Fluid Mech. 802, 464–489 (2016)

    Article  ADS  Google Scholar 

  12. McEwan, I.K., Willetts, B.B.: Numerical model of the saltation cloud. Acta Mech. Suppl. 1, 53–66 (1991)

    Article  Google Scholar 

  13. Spies, P.J., McEwan, I.K., Butterfield, G.R.: One-dimensional transition behaviour in saltation. Earth Surf. Process. Landf. 25, 505–518 (2000)

    Article  ADS  Google Scholar 

  14. Werner, B.T.: A steady-state model of wind-blown sand transport. J. Geol. 1, 1–17 (1990)

    Article  ADS  Google Scholar 

  15. Anderson, R.S., Sorenson, M., Willetts, B.B.: A review of recent progress in our understanding of aeolian sediment transport. Acta Mech. Suppl. 1, 1–19 (1991)

    Article  Google Scholar 

  16. Zheng, X.J., Huang, N., Zhou, Y.H.: The effect of electrostatic force on the evolution of sand saltation cloud. Eur. Phys. J. E. 19, 129–138 (2006)

    Article  Google Scholar 

  17. Kok, J.F., Renno, N.O.: A comprehensive numerical model of steady state saltation (COMSALT). J. Geophys. Res. 114, 2156–2202 (2009)

    Article  Google Scholar 

  18. Kok, J.F., Parteli, E.J.R., Michaels, T.I., Karam, D.B.: The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901 (2012)

    Article  ADS  Google Scholar 

  19. Wyngaard, J.C.: Atmospheric turbulence. Annu. Rev. Fluid Mech. 24, 205–234 (1992)

    Article  ADS  Google Scholar 

  20. Stout, J.E., Zobeck, T.M.: Intermittent saltation. Sedimentology 44, 959–970 (1997)

    Article  ADS  Google Scholar 

  21. Sherman, D.J., Li, B.L., Ellis, J.T., Swann, C.: Intermittent aeolian saltation: a protocol for quantification. Geogr. Rev. 108, 296–314 (2018)

    Article  Google Scholar 

  22. Wang, P., Zheng, X.J.: Saltation transport rate in unsteady wind variations. Eur. Phys. J. E 37, 40 (2014)

    Article  Google Scholar 

  23. Butterfield, G.R.: Transitional behavior of salutation: wind tunnel observations of unsteady winds. J. Arid Environ. 39, 337–394 (1998)

    Article  Google Scholar 

  24. Butterfield, G.R.: Application of thermal anemometry and high-frequency measurement of mass flux to aeolian sediment transport research. Geomorphology 29, 31–58 (1999)

    Article  ADS  Google Scholar 

  25. Baas, A.C.W., Sherman, D.J.: Formation and behavior of aeolian streamers. J. Geophys. Res. 110, 011 (2005)

    Google Scholar 

  26. Baas, A.C.W.: Challenges in aeolian geomorphology: investigating aeolian streamers. Geomorphology 93(1–2), 3–16 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  27. Huang, N., Wang, Z.S.: The formation of snow streamers in the turbulent atmosphere boundary layer. Aeolian Res. 23, 1–10 (2016)

    Article  ADS  Google Scholar 

  28. Shao, Y., Li, A.: Numerical modelling of saltation in atmospheric surface layer. Bound.-Lay. Meteorol. 91, 199–225 (1999)

    Article  ADS  Google Scholar 

  29. Ma, G.S., Zheng, X.J.: The fluctuation property of blown sand particles and the wind-sand flow evolution studied by numerical method. Eur. Phys. J. E 34, 54 (2011)

    Article  Google Scholar 

  30. Lund, T., Wu, X., Squires, K.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  31. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Method. Wiley, Hoboken (1995)

    Google Scholar 

  32. Zheng, X.J., Huang, N., Zhou, Y.H.: The effect of electrostatic force. Taleng X J, Huang N and Zhou Y H 972lux with thermal diffusion on the evolution of sand saltation cloud. Eur. Phys. J. E. 19, 129–138 (2006)

    Article  Google Scholar 

  33. Zhang, J.H., Wang, P., Zheng, X.J.: A prediction model for simulating near-surface wind gusts. Eur. Phys. J. E 36, 51 (2013)

    Article  ADS  Google Scholar 

  34. Zheng, X.J., Huang, N., Zhou, Y.H.: Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement. J. Geophys. Res. 108(10), 4322 (2003)

    Article  Google Scholar 

  35. Kang, L., Guo, L., Liu, D.: Reconstructing the vertical distribution of the aeolian saltation mass flux based on the probability distribution of lift-off velocity. Geomorphology 96, 1–15 (2008)

    Article  ADS  Google Scholar 

  36. Beladjine, D., Ammi, M., Oger, L., Valance, A.: Collision process between an incident bead and a three-dimensional granular packing. Phys. Rev. E 75, 061305 (2007)

    Article  ADS  Google Scholar 

  37. Rice, M.A., Willetts, B.B., McEwan, I.K.: An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed. Sedimentology 42, 695–706 (1995)

    Article  ADS  Google Scholar 

  38. Zhou, Y.H., Li, W.Q., Xiao, J.Z.: Particle dynamics method simulations of stochastic collisions of sandy grain-bed with mixed size in aeolian sand saltation. J. Geophys. Res. Atmos. 111(D15) (2006). https://doi.org/10.1029/2005JD006604

  39. Lau, T.C.W., Nathan, J.: Influence of Stokes number on the velocity and concentration distributions in particle-laden jets. J. Fluid Mech. 757(6), 432–457 (2014)

    Article  ADS  Google Scholar 

  40. Wang, Z.T., Zhang, C.L., Wang, H.T.: Intermittency of aeolian saltation. Eur. Phys. J. E 37, 126 (2014)

    Article  Google Scholar 

  41. Ma, G., Wang, Y., Zheng, J.: Numerical analysis of the influence of the near ground turbulence on the wind-sand flow under the natural wind. Granular Matter 23, 40 (2021). https://doi.org/10.1007/s10035-021-01097-3

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (11362010, 11902131). Department of Education Jiangsu Province Natural Science Research of Jiangsu Higher Education Institutions of China (19KJB560005) Key Research Base Construction Project of Lanzhou University “Special Fund for Fundamental Scientific Research Funds for Central Universities”(lzujbky-2020-kb03).

Author information

Authors and Affiliations

Authors

Contributions

Ma realized the calculation and analysis process as well as wrote the manuscript. Zhang participated in the calculation of wind field for the sand free cases, and made a great contribution to the data analysis of this part. Y Wang help deal with the data and the post-translation work. All authors attended discussion with this work and gave suggestions.

Corresponding author

Correspondence to Gaosheng Ma.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Zhang, J. & Wang, Y. Spatial characteristics of wind-sand flow development under natural wind. Granular Matter 23, 74 (2021). https://doi.org/10.1007/s10035-021-01129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01129-y

Keywords

Navigation