Skip to main content
Log in

Modified quantum defect theory: application to analysis of high-resolution Fourier transform spectra of neutral oxygen

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The quantum defect theory (QDT) has been successfully used to describe processes involving high-excited (Rydberg) states of atoms and molecules with a single valence electron over closed shells. This study proposes a modification of QDT to describe the low-energy excited states of a more complex atom (oxygen) which are responsible for its infrared (IR) spectrum. The radial wavefunctions of low-excited electron states include the quantum defect dependence on energy which is derived from the whole spectral series, in contrast to the highly excited Rydberg levels, whose quantum defects are determined by the individual level energies. Our method was applied to calculate the transition probabilities in the neutral oxygen spectra in discharge plasma measured using high-resolution time-resolved IR Fourier transform spectroscopy. The Boltzmann plots resulting from the experimental spectra prove that the modified QDT approach is an adequate method for calculating atomic dipole transition moments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Quantitative data presented in the figures may be obtained via an electronic scan, or requested from the corresponding author.]

Abbreviations

FTS:

Fourier transform spectroscopy

GF:

Green’s function

HR:

High-resolution

IP:

Ionization potential

IR:

Infrared

QDT:

Quantum defect theory

RAGF:

Reduced–added Green’s function (see [19])

SNR:

Signal-to-noise ratio

WKB:

Wentzel–Kramers–Brillouin (quasiclassical) approximation

References

  1. J.C. Pickering, R. Blackwell-Whitehead, A.P. Thorne, M. Ruffoni, C.E. Holmes, Laboratory measurements of oscillator strengths and their astrophysical applications. Can. J. Phys. 89(4), 387–393 (2011). https://doi.org/10.1139/p11-044

    Article  ADS  Google Scholar 

  2. M.J. Seaton, Quantum defect theory. Rep. Prog. Phys. 46(2), 167–257 (1983). https://doi.org/10.1088/0034-4885/46/2/002

    Article  ADS  Google Scholar 

  3. J. Stierhof, S. Kühn, M. Winter, P. Micke, R. Steinbrügge, C. Shah, N. Hell, M. Bissinger, M. Hirsch, R. Ballhausen, M. Lang, C. Gräfe, S. Wipf, R. Cumbee, G.L. Betancourt-Martinez, S. Park, J. Niskanen, M. Chung, F.S. Porter, T. Stöhlker, T. Pfeifer, G.V. Brown, S. Bernitt, P. Hansmann, J. Wilms, J.R. Crespo López-Urrutia, M.A. Leutenegger, A new benchmark of soft X-ray transition energies of Ne, CO\(_2\), and SF\(_6\): paving a pathway towards ppm accuracy. Eur. Phys. J. D 76, 38 (2022). https://doi.org/10.1140/epjd/s10053-022-00355-0

    Article  ADS  Google Scholar 

  4. A. Nadeem, M. Shah, S.U. Haq, S. Shahzada, M. Mumtaz, A. Waheed, M. Nawaz, M. Ahmed, M.A. Baig, Three-step laser excitation of the odd-parity 5s5d \(^3\)D \(\rightarrow \) 5snf \(^3\)F states of cadmium. Eur. Phys. J. D 68, 192 (2014). https://doi.org/10.1140/epjd/e2014-50136-1

    Article  ADS  Google Scholar 

  5. H. Wang, G. Jiang, J. Duan, Theoretical photoionization processes for aluminum-like P\(^{2+}\). Eur. Phys. J. D 70, 122 (2016). https://doi.org/10.1140/epjd/e2016-60731-7

    Article  ADS  Google Scholar 

  6. N. Kneip, F. Weber, M.A. Kaja, C.E. Düllmann, C. Mokry, S. Raeder, J. Runke, D. Studer, N. Trautmann, K. Wendt, Investigation of the atomic structure of curium and determination of its first ionization potential. Eur. Phys. J. D 76, 190 (2022). https://doi.org/10.1140/epjd/s10053-022-00510-7

    Article  ADS  Google Scholar 

  7. H.T.T. Nguyen, P.A. Meleshenko, A.V. Dolgikh, A.F. Klinskikh, On the solution of a “2D Coulomb + Aharonov-Bohm’’ problem: oscillator strengths in the discrete spectrum and scattering. Eur. Phys. J. D 62, 361–370 (2011). https://doi.org/10.1140/epjd/e2011-10726-y

    Article  ADS  Google Scholar 

  8. A.A. Khuskivadze, M.I. Chibisov, I.I. Fabrikant, Adiabatic energy levels and electric dipole moments of Rydberg states of Rb\(_{2}\) and Cs\(_{2}\) dimers. Phys. Rev. A 66, 042709 (2002). https://doi.org/10.1103/PhysRevA.66.042709

    Article  ADS  Google Scholar 

  9. E.S. Mironchuk, A.A. Narits, V.S. Lebedev, Collisional destruction of circular Rydberg states by atoms with small electron affinities. Eur. Phys. J. D 68, 368 (2014). https://doi.org/10.1140/epjd/e2014-50460-4

    Article  ADS  Google Scholar 

  10. E. Pazyuk, E. Revina, A. Stolyarov, Ab initio and long-range studies of the electronic transition dipole moments among the low-lying states of Rb\(_2\) and Cs\(_2\) molecules. J. Quant. Spectrosc. Radiat. Transf. 177, 283–290 (2016). https://doi.org/10.1016/j.jqsrt.2016.01.004

    Article  ADS  Google Scholar 

  11. A.A. Zalam, M.S. Dimitrijević, V.A. Srećković, N.N. Bezuglov, K. Miculis, A.N. Klyucharev, A. Ekers, Penning ionization processes involving cold Rydberg alkali metal atoms. Eur. Phys. J. D 74, 237 (2020). https://doi.org/10.1140/epjd/e2020-10507-7

    Article  ADS  Google Scholar 

  12. A. Kratzer, Die ultraroten rotationsspektren der halogenwasserstoffe. Z. Phys. 3(5), 289–307 (1920). https://doi.org/10.1007/BF01327754

    Article  ADS  Google Scholar 

  13. E. Fues, Das eigenschwingungsspektrum zweiatomiger moleküle in der undulationsmechanik. Ann. Phys. (Berlin) 385(12), 367–396 (1926). https://doi.org/10.1002/andp.19263851204

    Article  ADS  Google Scholar 

  14. G. Simons, New procedure for generating valence and Rydberg orbitals. I. Atomic oscillator strengths. J. Chem. Phys. 60(2), 645–649 (1974). https://doi.org/10.1063/1.1681087

    Article  ADS  Google Scholar 

  15. N.L. Manakov, V.D. Ovsiannikov, L.P. Rapoport, Atoms in a laser field. Phys. Rep. 141(6), 320–433 (1986). https://doi.org/10.1016/S0370-1573(86)80001-1

    Article  ADS  Google Scholar 

  16. E.Y. Il’inova, V.D. Ovsyannikov, Modified fues potential for many-electron atoms. Opt. Spectrosc. 105(5), 647–656 (2008). https://doi.org/10.1134/S0030400X08110015

    Article  ADS  Google Scholar 

  17. B.A. Zon, N.L. Manakov, L.P. Rapoport, Semiphenomenological Green’s function of the optical electron in a complex atom. Sov. Phys. Dokl. 14(3), 904 (1970)

    ADS  Google Scholar 

  18. V. Chernov, N. Manakov, A. Starace, Exact analytic relation between quantum defects and scattering phases with applications to Green’s functions in quantum defect theory. Eur. Phys. J. D 8, 347–359 (2000). https://doi.org/10.1007/s100530050044

    Article  ADS  Google Scholar 

  19. V.E. Chernov, D.L. Dorofeev, I.Y. Kretinin, B.A. Zon, Method of the reduced-added Green function in the calculation of atomic polarizabilities. Phys. Rev. A 71(2), 022505 (2005). https://doi.org/10.1103/PhysRevA.71.022505

    Article  ADS  Google Scholar 

  20. F. Primas, L.M. Rebull, D.K. Duncan, L.M. Hobbs, J.W. Truran, T.C. Beers, A new study of oxygen abundances derived from the O I triplet. New Astron. Rev. 45(8), 541–543 (2001). https://doi.org/10.1016/S1387-6473(01)00121-X

    Article  ADS  Google Scholar 

  21. G. Stasińska, N. Prantzos, G. Meynet, S. Simón-Díaz, C. Chiappini, M. Dessauges-Zavadsky, C. Charbonnel, H.-G. Ludwig, C. Mendoza, N. Grevesse, M. Arnould, B. Barbuy, Y. Lebreton, A. Decourchelle, V. Hill, P. Ferrando, G. Hébrard, F. Durret, M. Katsuma, C.J. Zeippen, Oxygen in the universe. EAS Publications Series 54, 1–370 (2012). https://doi.org/10.1051/eas/1254000

    Article  Google Scholar 

  22. D.R. Bates, Airglow and auroras. ed. by H.S.W. Massey, D.R. Bates. Applied Atomic Collision Physics vol. 1. Atmospheric Physics and Chemistry (Academic Press, New York, 1982), pp. 149–228

  23. J.L. Fox, The ionospheric source of the red and green lines of atomic oxygen in the Venus nightglow. Icarus 221(2), 787–799 (2012). https://doi.org/10.1016/j.icarus.2012.09.007

    Article  ADS  Google Scholar 

  24. A. Bhardwaj, S.K. Jain, CO Cameron band and CO\(_2^+\) UV doublet emissions in the dayglow of Venus: role of CO in the Cameron band production. J. Geophys. Res. Space Phys. 118(6), 3660–3671 (2013). https://doi.org/10.1002/jgra.50345

    Article  ADS  Google Scholar 

  25. L. Soret, J.-C. Gérard, L. Libert, V.I. Shematovich, D.V. Bisikalo, A. Stiepen, J.-L. Bertaux, SPICAM observations and modeling of Mars aurorae. Icarus 264, 398–406 (2016). https://doi.org/10.1016/j.icarus.2015.09.023

    Article  ADS  Google Scholar 

  26. A.V. Flegel, M.V. Frolov, XUV rectification effect in the IR-dressed medium. Phys. Rev. Lett. 131, 243202 (2023). https://doi.org/10.1103/PhysRevLett.131.243202

    Article  ADS  Google Scholar 

  27. G.E. Norman, Basis for the quantum defect method. Opt. Spectrosc. (USSR) 12, 183 (1962)

    ADS  MathSciNet  Google Scholar 

  28. V.A. Davydkin, L.P. Rapoport, The two-photon ionization of H\(_2^+\). J. Phys. B At. Mol. Opt. Phys. 7(9), 1101–1108 (1974). https://doi.org/10.1088/0022-3700/7/9/022

    Article  ADS  Google Scholar 

  29. V.A. Davydkin, B.A. Zon, Radiation and polarization characteristics of Rydberg atomic states. Part I Opt. Spectrosc. (USSR) 51(1), 13–150 (1981)

    ADS  Google Scholar 

  30. S. Civiš, M. Ferus, P. Kubelík, P. Jelínek, V.E. Chernov, Potassium spectra in the 700–7000 cm\(^{-1}\) domain: transitions involving f-, g-, and h-states. Astron. Astrophys. 541, 125 (2012). https://doi.org/10.1051/0004-6361/201218867

    Article  ADS  Google Scholar 

  31. H. Bateman, A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953)

    Google Scholar 

  32. A. Sarkar, Momentum-space properties for the S-states of the valence electron of potassium atom. Eur. Phys. J. D 76, 118 (2022). https://doi.org/10.1140/epjd/s10053-022-00428-0

    Article  ADS  Google Scholar 

  33. W.C. Martin, W.L. Wiese, Atomic, Molecular, and Optical Physics Handbook (version 2.2). National Institute of Standards and Technology, Gaithersburg, MD, USA (2002). https://www.nist.gov/spectroscopy Accessed 15.11.2023

  34. I.I. Sobelman, Atomic Spectra and Radiative Transitions. Springer Series in Chemical Physics, vol. 1 (Springer, Berlin, 1979)

  35. K. Kawaguchi, O. Baskakov, Y. Hosaki, Y. Hama, C. Kugimiya, Time-resolved fourier transform spectroscopy of pulsed discharge products. Chem. Phys. Lett. 369(3–4), 293–298 (2003). https://doi.org/10.1016/S0009-2614(02)02017-1

    Article  ADS  Google Scholar 

  36. S. Civiš, M. Ferus, V.E. Chernov, E.M. Zanozina, L. Juha, Zn I spectra in the 1300–6500 cm\(^{-1}\) range. J. Quant. Spectrosc. Radiat. Transf. 134, 64–73 (2014). https://doi.org/10.1016/j.jqsrt.2013.10.017

    Article  ADS  Google Scholar 

  37. S. Civiš, P. Kubelík, M. Ferus, V.E. Chernov, E.M. Zanozina, L. Juha, Laser ablation of an indium target: time-resolved Fourier-transform infrared spectra of In I in the 700–7700 cm\(^{-1}\) range. J. Anal. At. Spectrom. 29, 2275–2283 (2014). https://doi.org/10.1039/C4JA00123K

    Article  Google Scholar 

  38. I.E. Gordon, L.S. Rothman, R.J. Hargreaves, R. Hashemi, E.V. Karlovets, F.M. Skinner, E.K. Conway, C. Hill, R.V. Kochanov, Y. Tan, P. Wcisło, A.A. Finenko, K. Nelson, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, A. Coustenis, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, E.J. Mlawer, A.V. Nikitin, V.I. Perevalov, M. Rotger, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, E.M. Adkins, A. Baker, A. Barbe, E. Cané, A.G. Császár, A. Dudaryonok, O. Egorov, A.J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J.J. Harrison, J.-M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N.N. Lavrentieva, T.J. Lee, D.A. Long, A.A. Lukashevskaya, O.M. Lyulin, V.Y. Makhnev, W. Matt, S.T. Massie, M. Melosso, S.N. Mikhailenko, D. Mondelain, H.S.P. Müller, O.V. Naumenko, A. Perrin, O.L. Polyansky, E. Raddaoui, P.L. Raston, Z.D. Reed, M. Rey, C. Richard, R. Tóbiás, I. Sadiek, D.W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S.A. Tashkun, J. Vander Auwera, I.A. Vasilenko, A.A. Vigasin, G.L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, S.N. Yurchenko, The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 277, 107949 (2022). https://doi.org/10.1016/j.jqsrt.2021.107949

    Article  Google Scholar 

  39. C. Froese Fischer, The Hartree-Fock Method for Atoms: A Numerical Approach (A Wiley-Interscience publication. Wiley, New York, 1977)

    Google Scholar 

  40. C. Froese Fischer, T. Brage, P. Jönsson, Computational Atomic Structure: An MCHF Approach (Institute of Physics Publishing, Bristol and Philadelphia, 1997)

  41. I.L. Glukhov, S.N. Mokhnenko, E.A. Nikitina, V.D. Ovsiannikov, Natural widths and blackbody radiation induced shift and broadening of Rydberg levels in magnesium ions. Eur. Phys. J. D 69, 1 (2015). https://doi.org/10.1140/epjd/e2014-50648-6

    Article  ADS  Google Scholar 

  42. A.A. Kamenski, N.L. Manakov, S.N. Mokhnenko, V.D. Ovsiannikov, A.A. Zenischeva, van der Waals interaction of atoms in circular Rydberg states. Eur. Phys. J. D 72, 174 (2018). https://doi.org/10.1140/epjd/e2018-90164-1

    Article  ADS  Google Scholar 

  43. I.L. Glukhov, A.A. Kamenski, V.D. Ovsiannikov, V.G. Palchikov, Precision spectroscopy of radiation transitions between singlet rydberg states of the group IIb and Yb atoms. Photonics 10(10), 1153 (2023). https://doi.org/10.3390/photonics10101153

    Article  Google Scholar 

  44. B.N. Sismanoglu, K.G. Grigorov, R. Caetano, M.V.O. Rezende, Y.D. Hoyer, Spectroscopic measurements and electrical diagnostics of microhollow cathode discharges in argon flow at atmospheric pressure. Eur. Phys. J. D 60, 505–516 (2010). https://doi.org/10.1140/epjd/e2010-00219-0

    Article  ADS  Google Scholar 

  45. I.L. Epstein, M. Gavrilović, S. Jovićević, N. Konjević, Y.A. Lebedev, A.V. Tatarinov, The study of a homogeneous column of argon plasma at a pressure of 0.5 torr, generated by means of the Beenakker’s cavity. Eur. Phys. J. D 68, 334 (2014). https://doi.org/10.1140/epjd/e2014-50182-7

    Article  ADS  Google Scholar 

  46. J. Röpcke, D. Loffhagen, E. Wahl, A.S.C. Nave, S. Hamann, J.-P.H. Helden, N. Lang, H. Kersten, On improved understanding of plasma-chemical processes in complex low-temperature plasmas. Eur. Phys. J. D 72, 87 (2018). https://doi.org/10.1140/epjd/e2017-80363-7

    Article  ADS  Google Scholar 

  47. S. Mashayekh, N. Cvetanović, G.B. Sretenović, B.M. Obradović, Z. Liu, K. Yan, M.M. Kuraica, Experimental study of a microsecond-pulsed cold plasma jet. Eur. Phys. J. D 77, 115 (2023). https://doi.org/10.1140/epjd/s10053-023-00692-8

    Article  ADS  Google Scholar 

  48. A. Kramida, Critical evaluation of data on atomic energy levels, wavelengths, and transition probabilities. Fusion Sci. Technol. 63(3), 313–323 (2013). https://doi.org/10.13182/FST13-A16437

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Russian Science Foundation (grant number 24-22-00238, https://rscf.ru/en/project/24--22-00238).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.C. and N.L.M.; methodology, M.F.; visualization, A.I.Z. and V.E.Ch.; writing—original draft preparation, E.M.Z.; writing—review and editing, V.E.Ch.; data curation, O.V.Z.; software, P.K.; formal analysis, A.I.Z. and A.V.N.

Corresponding author

Correspondence to Vladislav E. Chernov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, V.E., Civiš, S., Manakov, N.L. et al. Modified quantum defect theory: application to analysis of high-resolution Fourier transform spectra of neutral oxygen. Eur. Phys. J. D 78, 46 (2024). https://doi.org/10.1140/epjd/s10053-024-00837-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00837-3

Navigation