Skip to main content
Log in

Theoretical investigation of lateral and rotary light drag by a vortex beam in graphene quantum dots

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A vortex beam of light is used to enhance and control the lateral and rotary light drag effects in three-level graphene quantum dots. In this study, by using a vortex beam, two practical parameters are introduced to control the optical properties of the system and consequently enhance both the lateral and rotary light drag effects. These parameters are the orbital angular momentum and the azimuthal phase of the applied controlling vortex beam. By increasing the orbital angular momentum of the vortex beam, the absorption of the probe field decreases, while the lateral and rotary light drag effects increase. Furthermore, we found that the azimuthal phase of the vortex beam has a substantial impact on the optical properties of the probe field. Thus, it can be utilized as an efficient parameter for enhancing and controlling light drag effects.

Graphical abstract

Lateral light drag as a function of the medium transverse velocity. As demonstrated, increasing the amount of topological charge (l) and consequently the orbital angular momentum results in enhanced lateral light drag

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. J. Stachel, A. Kox, and J. Eisenstaedt, The Universe of General Relativity, 2005

  2. A. Fresnel, Lettre d’Augustin Fresnel à François Arago sur l’influence du mouvement terrestre dans quelques phénomènes d’optique, in Annales de chimie et de physique, 1818, pp. 57–66

  3. L. Landau, E. Lifshitz, Continuous medium electrodynamics (Nauka, Moscow, 1982)

    Google Scholar 

  4. M. Fizeau, Sur les hypothèses relatives à l’éther lumineux, et sur une expérience qui parait démontrer que le mouvement des corps change la vitesse avec laquelle la lumière se propage dans leur intérieur. SPIE milestone series 28, 445–449 (1991)

    Google Scholar 

  5. A.A. Michelson, E.W. Morley, ART. XXXVI.--Influence of Motion of the Medium on the Velocity of Light. Am J Sci (1880-1910) 31, 377 (1886)

    Article  Google Scholar 

  6. W. Macek, J. Schneider, R. Salamon, Measurement of Fresnel drag with the ring laser. J. Appl. Phys. 35, 2556–2557 (1964)

    Article  ADS  Google Scholar 

  7. G. Sanders, S. Ezekiel, Measurement of Fresnel drag in moving media using a ring-resonator technique. JOSA B 5, 674–678 (1988)

    Article  ADS  Google Scholar 

  8. H.A. Lorentz, Electromagnetic phenomena in a system moving with any velocity smaller than that of light, in Collected Papers. (Springer, Berlin, 1937), pp.172–197

    Chapter  Google Scholar 

  9. P. Zeeman, "Fresnel’s coefficient for light of different colours (First part)," In Proceedings of Academy Science Amsterdam, 1914, pp. 445–451

  10. P. Zeeman, Fresnel’s coefficient for light of different colours (Second part). Proc. Kon. Acad. Van Weten 18, 398–408 (1915)

    ADS  Google Scholar 

  11. P. Zeeman, The propagation of light in moving transparent solid substances. I. Apparatus for the observation of the fizeau-effect in solid substances, in KNAW, Proceedings, 1919, pp. 1919–1920

  12. A. Snethlage, P. Zeeman, The propagation of light in moving, transparent, solid substances. II. Measurements on the Fizeau-effect in quartz. Proceed. Royal Netherlands Acade. Arts Sci. (KNAW) 22, 512–522 (1920)

    Google Scholar 

  13. A. Snethlage, P. Zeeman, The propagation of light in moving, transparent, solid substances. III. Measurements on the Fizeau-effect in flint glass. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences 23, 1402–1411 (1921)

    ADS  Google Scholar 

  14. R. V. Jones, "‘Aether drag’in a transversely moving medium," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 345, pp. 351–364, 1975.

  15. R. V. Jones, "Rotary ‘aether drag’," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 349, pp. 423–439, 1976.

  16. U. Leonhardt, P. Piwnicki, Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 84, 822 (2000)

    Article  ADS  Google Scholar 

  17. H. Bilger, A. Zavodny, Fresnel drag in a ring laser: measurement of the dispersive term. Phys. Rev. A 5, 591 (1972)

    Article  ADS  Google Scholar 

  18. M. Arif, H. Kaiser, S. Werner, A. Cimmino, W. Hamilton, A. Klein et al., Null Fizeau effect for thermal neutrons in moving matter. Phys. Rev. A 31, 1203 (1985)

    Article  ADS  Google Scholar 

  19. A. Klein, G. Opat, A. Cimmino, A. Zeilinger, W. Treimer, R. Gähler, Neutron propagation in moving matter: the Fizeau experiment with massive particles. Phys. Rev. Lett. 46, 1551 (1981)

    Article  ADS  Google Scholar 

  20. A.A. Svidzinsky, F. Li, X. Zhang, Generation of coherent light by a moving medium. Phys. Rev. Lett. 118, 123902 (2017)

    Article  ADS  Google Scholar 

  21. D. Strekalov, A.B. Matsko, N. Yu, L. Maleki, Observation of light dragging in a rubidium vapor cell. Phys. Rev. Lett. 93, 023601 (2004)

    Article  ADS  Google Scholar 

  22. A. Safari, I. De Leon, M. Mirhosseini, O.S. Magaña-Loaiza, R.W. Boyd, Light-drag enhancement by a highly dispersive rubidium vapor. Phys. Rev. Lett. 116, 013601 (2016)

    Article  ADS  Google Scholar 

  23. A. Iqbal, N. Khan, B.A. Bacha, A.U. Rahman, A. Ahmad, Photon drag enhancement by a slow-light moving medium via electromagnetically-induced transparency amplification. Phys. Lett. A 381, 3134–3140 (2017)

    Article  ADS  Google Scholar 

  24. A.H. Gharamaleki, A. Kevin, M.A. Tavakoli-Ghazi-Jahani, Light drag via electron tunneling and incoherent pumping in semiconductor three-level InAs/GaAs double quantum dot molecules. Eur. Phys. J. D 73, 1–7 (2019)

    Article  Google Scholar 

  25. A.H. Gharamaleki, A. Kevin, Lateral and rotary light-drag enhancement in a vee+ ladder configuration comprising a Rydberg state. Phys. Scr. 96, 125524 (2021)

    Article  ADS  Google Scholar 

  26. Y. Dong, L. Xiong, I. Phinney, Z. Sun, R. Jing, A. McLeod et al., Fizeau drag in graphene plasmonics. Nature 594, 513–516 (2021)

    Article  ADS  Google Scholar 

  27. W. Zhao, S. Zhao, H. Li, S. Wang, S. Wang, M.I.B. Utama et al., Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature 594, 517–521 (2021)

    Article  ADS  Google Scholar 

  28. A. Zahir, A.I. Bashir, N. Khan, S.S. Hayat, Quantum coherence-enhanced optical properties and drag of photons and SPPs in semiconducting quantum dots and resonantly-coupled dot–nanoparticle plasmonic interfaces. J. Phys. Chem. Solids 172, 111088 (2023)

    Article  Google Scholar 

  29. A.I. Bashir, A. Zahir, N. Khan, S.S. Hayat, Controlling optical properties and drag of photon and surface plasmon polaritons in triple quantum dot molecules and dots-metal plasmonic interface via tunneling-assisted quantum coherence. Opt. Laser Technol. 149, 107915 (2022)

    Article  Google Scholar 

  30. A.I. Bashir, A. Zahir, S.S. Hayat, Role of quantum-coherence dressed states on the Fresnel-Fizeau drag and optical properties of surface plasmon polaritons through asymmetric double quantum dot-metallic plasmonic interfaces. Surf. Interfaces 29, 101709 (2022)

    Article  Google Scholar 

  31. A. Zahir, A.I. Bashir, S.S. Hayat, Quantum coherence-assisted optical properties and drag of SPPs on quantum dots and resonantly-coupled dots-metal plasmonic interfaces via interbands tunneling and Fano resonance. Opt. Mater. 126, 112227 (2022)

    Article  Google Scholar 

  32. M. Bacon, S.J. Bradley, T. Nann, Graphene quantum dots. Part. Part. Syst. Charact. 31, 415–428 (2014)

    Article  Google Scholar 

  33. P. Tian, L. Tang, K. Teng, S. Lau, Graphene quantum dots from chemistry to applications. Mater. Today Chem. 10, 221–258 (2018)

    Article  Google Scholar 

  34. J. Shiri, A. Malakzadeh, Phase controllable terahertz switch in a Landau-quantized graphene nanostructure. Laser Phys. 27, 016201 (2016)

    Article  ADS  Google Scholar 

  35. B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Spin qubits in graphene quantum dots. Nat. Phys. 3, 192–196 (2007)

    Article  Google Scholar 

  36. A.L. Sanati, F. Faridbod, M.R. Ganjali, Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq. 241, 316–320 (2017)

    Article  Google Scholar 

  37. F.A. Permatasari, A.H. Aimon, F. Iskandar, T. Ogi, K. Okuyama, Role of C-N configurations in the photoluminescence of graphene quantum dots synthesized by a hydrothermal route. Sci. Rep. 6, 1–8 (2016)

    Article  Google Scholar 

  38. F. Xu, J. Zhu, S. Fan, Y. Qi, Control of slow light in three-and four-level graphene nanostructures. Mod. Phys. Lett. B 33, 1950226 (2019)

    Article  ADS  Google Scholar 

  39. S. Liu, W.-X. Yang, Z. Zhu, R.-K. Lee, Effective terahertz signal detection via electromagnetically induced transparency in graphene. JOSA B 33, 279–285 (2016)

    Article  ADS  Google Scholar 

  40. Z.-G. Chen, Z. Shi, W. Yang, X. Lu, Y. Lai, H. Yan et al., Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures. Nat. Commun. 5, 4461 (2014)

    Article  ADS  Google Scholar 

  41. A.I. Bashir, Quantum coherence-assisted secure communication of internet of things information via Landau-quantized graphene. Opt. Quant. Electron. 55, 983 (2023)

    Article  ADS  Google Scholar 

  42. A.M. Yao, M.J. Padgett, Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011)

    Article  Google Scholar 

  43. L. Allen, M. Padgett, M. Babiker, IV The orbital angular momentum of light, in Progress in optics, vol. 39, (Elsevier, Amsterdam, 1999), pp.291–372

    Google Scholar 

  44. L. Allen, M.W. Beijersbergen, R. Spreeuw, J. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  45. N. Radwell, T.W. Clark, B. Piccirillo, S.M. Barnett, S. Franke-Arnold, Spatially dependent electromagnetically induced transparency. Phys. Rev. Lett. 114, 123603 (2015)

    Article  ADS  Google Scholar 

  46. S. Sharma, T.N. Dey, Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration. Phys. Rev. A 96, 033811 (2017)

    Article  ADS  Google Scholar 

  47. M. Babiker, W. Power, L. Allen, Light-induced torque on moving atoms. Phys. Rev. Lett. 73, 1239 (1994)

    Article  ADS  Google Scholar 

  48. V. Lembessis, M. Babiker, Light-induced torque for the generation of persistent current flow in atomic gas Bose-Einstein condensates. Phys. Rev. A 82, 051402 (2010)

    Article  ADS  Google Scholar 

  49. Z. Dutton, J. Ruostekoski, Transfer and storage of vortex states in light and matter waves. Phys. Rev. Lett. 93, 193602 (2004)

    Article  ADS  Google Scholar 

  50. J. Ruseckas, G. Juzeliūnas, P. Öhberg, S.M. Barnett, Polarization rotation of slow light with orbital angular momentum in ultracold atomic gases. Phys. Rev. A 76, 053822 (2007)

    Article  ADS  Google Scholar 

  51. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, G.-C. Guo, Linear up-conversion of orbital angular momentum. Opt. Lett. 37, 3270–3272 (2012)

    Article  ADS  Google Scholar 

  52. G. Walker, A. Arnold, S. Franke-Arnold, Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor. Phys. Rev. Lett. 108, 243601 (2012)

    Article  ADS  Google Scholar 

  53. A. Rahmatullah, Q. Ziauddin, Spatially structured transparency and transfer of optical vortices via four-wave mixing in a quantum-dot nanostructure. Phys. Rev. A 101, 023821 (2020)

    Article  ADS  Google Scholar 

  54. H.R. Hamedi, J. Ruseckas, E. Paspalakis, G. Juzeliūnas, Transfer of optical vortices in coherently prepared media. Phys. Rev. A 99, 033812 (2019)

    Article  ADS  Google Scholar 

  55. S. Kevin, M. Sahrai, S.H. Asadpour, Controllable Hartman effect by vortex beam in a one dimensional photonic crystal doped by graphene quantum dots. Sci. Rep. 13, 2992 (2023)

    Article  ADS  Google Scholar 

  56. M. Sahrai, M. Abbasabadi, All-optical switch based on doped graphene quantum dots in a defect layer of a one-dimensional photonic crystal. Appl. Opt. 57, 521–526 (2018)

    Article  ADS  Google Scholar 

  57. E. Schöll, L. Schweickert, L. Hanschke, K.D. Zeuner, F. Sbresny, T. Lettner et al., Crux of using the cascaded emission of a three-level quantum ladder system to generate indistinguishable photons. Phys. Rev. Lett. 125, 233605 (2020)

    Article  ADS  Google Scholar 

  58. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. Gérard, I. Abram, Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001)

    Article  ADS  Google Scholar 

  59. S. Schmaus, V. Koerting, J. Paaske, T. Jespersen, J. Nygård, P. Wölfle, Nonequilibrium cotunneling through a three-level quantum dot. Phys. Rev. B 79, 045105 (2009)

    Article  ADS  Google Scholar 

  60. A.I. Bashir, S.U. Batool, A. Arif, A. Shazad, Dispersion-dependent superluminal propagation and photon drag in GaAs/AlGaAs quantum dot molecule. Phys. Scr. 98, 115116 (2023)

    Article  ADS  Google Scholar 

  61. M.O. Scully, M.S. Zubairy, Quantum optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AHG initiated the project and supervised it. SK performed the numerical simulations and analytic calculations. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Ali Hamrah Gharamaleki.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kevin, S., Gharamaleki, A.H. Theoretical investigation of lateral and rotary light drag by a vortex beam in graphene quantum dots. Eur. Phys. J. D 78, 47 (2024). https://doi.org/10.1140/epjd/s10053-024-00836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00836-4

Navigation