Skip to main content
Log in

Study of \(K_{\alpha }\) X-ray flux angular distribution in Cu and KBr targets

  • Regular Article - Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Due to a wide band-gap, the alkali metal halide salts (KBr, NaBr, KI, NaI and CsI) are transparent to infrared femtosecond laser pulses and allow generation of X-ray inside the sample rather than on its surface. In this study, the emission of X-ray was experimentally investigated in the KBr target. The KBr salt targets were prepared using pellet method. We compared the X-ray emission in KBr and metallic Cu targets. The angular distribution of the X-ray flux was investigated using experimental measurements and numerical Monte Carlo modeling. The mean depth of the X-ray source in the alkali halide targets was found to be 5 \(\mu \)m.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: We agree to provide all relevant raw data to any researcher wishing to use them for non-commercial purposes].

References

  1. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin, Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410(6824), 65–68 (2001). https://doi.org/10.1038/35065045

    Article  ADS  Google Scholar 

  2. A. Rousse, P. Audebert, J.P. Geindre, F. Falliès, J.C. Gauthier, A. Mysyrowicz, G. Grillon, A. Antonetti, Efficient K\(\alpha \) x-ray source from femtosecond laser-produced plasmas. Phys. Rev. E 50, 2200–2207 (1994). https://doi.org/10.1103/PhysRevE.50.2200

    Article  ADS  Google Scholar 

  3. M. Hagedorn, J. Kutzner, G. Tsilimis, H. Zacharias, High-repetition-rate hard X-ray generation with sub-millijoule femtosecond laser pulses. Appl. Phys. B 77(1), 49–57 (2003). https://doi.org/10.1007/s00340-003-1226-3

    Article  Google Scholar 

  4. M. Holtz, C. Hauf, J. Weisshaupt, A.-A.H. Salvador, M. Woerner, T. Elsaesser, Towards shot-noise limited diffraction experiments with table-top femtosecond hard X-ray sources. Struct. Dyn. 4(5), 054304 (2017). https://doi.org/10.1063/1.4991355

    Article  Google Scholar 

  5. J. Götzfried, A. Döpp, M. Gilljohann, H. Ding, S. Schindler, J. Wenz, L. Hehn, F. Pfeiffer, S. Karsch, Research towards high-repetition rate laser-driven X-ray sources for imaging applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel Spectrom. Detect. Associated Equip. 909, 286–289 (2018). https://doi.org/10.1016/j.nima.2018.02.110

  6. A. Baguckis, A. Plūkis, J. Reklaitis, V. Remeikis, L. Giniūnas, M. Vengris, Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses. Appl. Phys. B 123(12), 290 (2017). https://doi.org/10.1007/s00340-017-6868-7

    Article  ADS  Google Scholar 

  7. J. Reklaitis, V. Barkauskas, A. Plūkis, V. Kovalevskij, M. Gaspariūnas, D. Germanas, J. Garankin, T. Stanislauskas, K. Jasiūnas, V. Remeikis, Emission and dose characterization of the 1 kHz repetition rate high-Z metal K\(_\alpha \) source driven by 20 mJ femtosecond pulses. Appl. Phys. B 125(3), 41 (2019). https://doi.org/10.1007/s00340-019-7155-6

    Article  ADS  Google Scholar 

  8. F. Zamponi, Z. Ansari, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, M. Haschke, Femtosecond hard X-ray plasma sources with a kilohertz repetition rate. Appl. Phys. A 96(1), 51–58 (2009). https://doi.org/10.1007/s00339-009-5171-9

    Article  ADS  Google Scholar 

  9. K. Hatanaka, T. Miura, H. Fukumura, Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride. Appl. Phys. Lett. 80(21), 3925–3927 (2002). https://doi.org/10.1063/1.1482135

    Article  ADS  Google Scholar 

  10. H. Fiedorowicz, A. Bartnik, R. Jarocki, R. Rakowski, M. Szczurek, Enhanced X-ray emission in the 1-keV range from a laser-irradiated gas puff target produced using the double-nozzle setup. Appl. Phys. B Lasers Optics 70(2), 305–308 (2000). https://doi.org/10.1007/s003400050050

    Article  ADS  Google Scholar 

  11. S. Lee, I.W. Choi, I.-B. Sohn, K. Lee, G.I. Shim, Y.U. Jeong, B. Han, W.J. Ryu, H.-N. Kim, H. Cha, Femtosecond laser-driven intense Cu K\(\alpha \) X-ray source with a novel film target driver. J Korean Phys. Soc. 67, 800–806 (2015). https://doi.org/10.3938/jkps.67.800

    Article  ADS  Google Scholar 

  12. B. Li, L. Jiang, X. Li, P. Ran, P. Zuo, A. Wang, L. Qu, Y. Zhao, Z. Cheng, Y. Lu, Preparation of monolayer MoS\(_2\) quantum dots using temporally shaped femtosecond laser ablation of bulk MoS\(_2\) targets in water. Sci. Rep. 7(1), 1–12 (2017). https://doi.org/10.1038/s41598-017-10632-3

    Article  ADS  Google Scholar 

  13. Y. Azamoum, V. Tcheremiskine, R. Clady, A. Ferré, L. Charmasson, O. Utéza, M. Sentis, Impact of the pulse contrast ratio on molybdenum K\(\alpha \) generation by ultrahigh intensity femtosecond laser solid interaction. Sci. Rep. 8(1), 4119 (2018). https://doi.org/10.1038/s41598-018-22487-3

    Article  ADS  Google Scholar 

  14. W. Rozmus, V.T. Tikhonchuk, Skin effect and interaction of short laser pulses with dense plasmas. Phys. Rev. A 42, 7401–7412 (1990). https://doi.org/10.1103/PhysRevA.42.7401

    Article  ADS  Google Scholar 

  15. S. Semushin, V. Malka, High density gas jet nozzle design for laser target production. Rev. Sci. Instrum. 72(7), 2961–2965 (2001). https://doi.org/10.1063/1.1380393

    Article  ADS  Google Scholar 

  16. A. Koroliov, J. Reklaitis, K. Varsockaja, D. Germanas, A. Plukis, V. Remeikis, X-ray pulse emission of alkali metal halide salts irradiated by femtosecond laser pulses. Appl. Phys. B 126(9), 144 (2020). https://doi.org/10.1007/s00340-020-07494-5

    Article  ADS  Google Scholar 

  17. K. Debertin, W. Pessara, Natural line-width effects in gamma- and X-ray emission rate measurements with semiconductor detectors. Nucl. Instrum. Methods 184(2–3), 497–503 (1981). https://doi.org/10.1016/0029-554x(81)90753-9

    Article  ADS  Google Scholar 

  18. J.L. Campbell, T. Papp, Widths of the Atomic K-N7 Levels. Atomic Data Nucl. Data Tables 77(1), 1–56 (2001). https://doi.org/10.1006/adnd.2000.0848

    Article  ADS  Google Scholar 

  19. J. Reklaitis, D. Baltrūnas, V. Remeikis, K. Maẑeika, Application of semiconductor detector for recording the Rayleigh scattering of Mössbauer radiation. Lith. J. Phys. 50(4), 419–426 (2010). https://doi.org/10.3952/lithjphys.50411

    Article  Google Scholar 

  20. G. Dent, Preparation of Samples for IR spectroscopy as KBr Disks. Internet Journal of Vibrational Spectroscopy 1, 1–2 (1996)

  21. J.H. Hubbell, S.M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4) [Online] Available: http://physics.nist.gov/xaamdi [2022.08.25] (2004). https://doi.org/10.18434/t4d01f

  22. A. Ferrari, P.R. Sala, M. Fasso, A. Ranft, J. Fluka: a multi-particle transport code (2005). https://doi.org/10.2172/877507

    Article  Google Scholar 

  23. T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fassò, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov, V. Vlachoudis, The Fluka code: Developments and challenges for high energy and medical applications. Nucl. Data Sheets 120, 211–214 (2014). https://doi.org/10.1016/j.nds.2014.07.049

    Article  ADS  Google Scholar 

  24. F.N. Beg, A.R. Bell, A.E. Dangor, C.N. Danson, A.P. Fews, M.E. Glinsky, B.A. Hammel, P. Lee, P.A. Norreys, M. Tatarakis, A study of picosecond laser-solid interactions up to 10\(^{19}\) W\(\cdot \)cm\(^{-2}\). Phys. Plasmas 4(2), 447–457 (1997). https://doi.org/10.1063/1.872103

    Article  ADS  Google Scholar 

  25. Y. Hironaka, K.G. Nakamura, K. Kondo, Angular distribution of X-ray emission from a copper target irradiated with a femtosecond laser. Appl. Phys. Lett. 77(25), 4110–4111 (2000). https://doi.org/10.1063/1.1335841

    Article  ADS  Google Scholar 

  26. B. Hou, A. Mordovanakis, J. Easter, K. Krushelnick, J.A. Nees, Directional properties of hard X-ray sources generated by tightly focused ultrafast laser pulses. Appl. Phys. Lett. 93(20), 201503 (2008). https://doi.org/10.1063/1.3023065

    Article  ADS  Google Scholar 

  27. K.K.L. Fung, W.B. Gilboy, Anode heel effect on patient dose in lumbar spine radiography. British J. Radiol. 73(869), 531–536 (2000). https://doi.org/10.1259/bjr.73.869.10884750

    Article  Google Scholar 

  28. R. Hill, J. Poder, Kilovoltage X-ray beam dosimetry and imaging, in Radiochromic Film: Role and Applications in Radiation Dosimetry, 1st edn., ed. by I.J. Das (CRC Press, Boca Raton, 2017), pp.81–100. https://doi.org/10.1201/9781315154879-5

  29. W.S. Cleveland, E. Grosse, W.M. Shyu, Local regression models, in Statistical Models in S, 1st edn., ed. by J.M. Chambers, T.J. Hastie (Routledge, New York, 1992), pp.309–377. https://doi.org/10.1201/9780203738535

Download references

Acknowledgements

This project has received funding from the European Social Fund (project No 09.3.3-LMT-K-712-19-0014) under a grant agreement with the Research Council of Lithuania (LMTLT).

Author information

Authors and Affiliations

Authors

Contributions

Anton Koroliov, Karolina Varsockaja, Jonas Reklaitis and Art\(\bar{\mathrm{u}}\)ras Plukis participated in experimental design, data analysis and interpretation part. Anton Koroliov, Karolina Varsockaja and Jonas Reklaitis carried out the data acquisition. Vytenis Barkauskas, Darius Germanas and Jonas Reklaitis participated in data modeling. All authors contributed equally in discussion of the results. Anton Koroliov, Karolina Varsockaja, Jonas Reklaitis and Vytenis Barkauskas carried out the draft manuscript. Art\(\bar{\mathrm{u}}\)ras Plukis, Vidmantas Remeikis and Jonas Reklaitis conducted the supervision of the experimental part and the manuscript draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anton Koroliov.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroliov, A., Reklaitis, J., Barkauskas, V. et al. Study of \(K_{\alpha }\) X-ray flux angular distribution in Cu and KBr targets. Eur. Phys. J. D 76, 171 (2022). https://doi.org/10.1140/epjd/s10053-022-00499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00499-z

Navigation