Skip to main content
Log in

Flexible guided-wave manipulation using phase-gradient dielectric metasurface antenna array

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Metasurface has been deemed as a promising way in integrated optics to manipulate the guided wave. In this paper, we demonstrate the capability of manipulating the amplitude, phase, and polarization of the light in waveguides using the phase-gradient dielectric metasurface antenna array. Using fundamental TE mode as input, we design and simulate two bimodal interferometers that generate two guided modes with tunable intensity percentages and a quasi-circular polarization generator. For bimodal interferometers, the two interferometers have the output of the hybrid TE0–TE1 modes and TE0–TE2 modes with identical intensity, respectively. Two groups of the hybrid modes separately interfere in the waveguides and generate two and three hot spots in the transverse direction. The mode purities of all modes for both two bimodal interferometers are higher than 47.35%. The power transmissions for TE0–TE1 modes and TE0–TE2 modes interferometers are 69.7% and 70.3%. For quasi-circular polarization generator, we generate the hybrid TE0–TM0 modes with a 87.3° phase difference. The mode purities for the two modes are higher than 44.91%, and its power transmission is 69.1%. By arranging the number and distributions of the meta-atoms in the antenna array, we can flexibly tailor the constituent of waveguide modes with low budget.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.]

References

  1. Q.X. Cheng, M. Bahadori, M. Glick, S. Rumley, K. Bergman, Recent advances in optical technologies for data centers: a review. Optica 5, 1354 (2018)

    ADS  Google Scholar 

  2. D.A.B. Miller, Device requirements for optical interconnects to silicon chips. Proc. IEEE. 97, 1166 (2009)

    Google Scholar 

  3. D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, Q. Yang, Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express. 23, 11152 (2015)

    ADS  Google Scholar 

  4. J. Wang, S.L. He, D.X. Dai, On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode-and polarization-division-multiplexing. Laser Photonics Rev. 8, L18 (2014)

    ADS  Google Scholar 

  5. W.F. Jiang, X.G. Wang, Ultra-broadband mode splitter based on phase controlling of bridged subwavelength grating. J. Lightwave Technol. 38, 2414 (2020)

    ADS  Google Scholar 

  6. C.C. Ye, D.X. Dai, Ultra-compact broadband 2×2 3 dB power splitter using a subwavelength-grating-assisted asymmetric directional coupler. J. Lightwave Technol. 38, 2370 (2020)

    ADS  Google Scholar 

  7. J.C. Mak, C. Sideris, J. Jeong, A. Hajimiri, J.K. Poon, Binary particle swarm optimized 2×2 power splitters in a standard foundry silicon photonic platform. Opt. Lett. 41, 3868 (2016)

    ADS  Google Scholar 

  8. H.Y. Zhang, L.J. Zhou, L.J. Lu, J. Xu, N.N. Wang, H. Hu, B.M.A. Rahman, Z.P. Zhou, J.P. Ghen, Miniature multilevel optical memristive switch using phase change material. ACS Photonics 6, 2205 (2019)

    Google Scholar 

  9. S.T. Chen, Y.C. Shi, S.L. He, D.X. Dai, Variable optical attenuator based on a reflective Mach-Zehnder interferometer. Optics Commun. 361, 55 (2016)

    ADS  Google Scholar 

  10. J.T. Kim, H. Choi, Polarization control in graphene-based polymer waveguide polarizer. Laser Photonics Rev. 12, 1800142 (2018)

    ADS  Google Scholar 

  11. H. Zafar, P. Moreira, A.M. Taha, B. Paredes, M.S. Dahlem, A. Khilo, Compact silicon TE-pass polarizer using adiabatically-bent fully-etched waveguides. Opt. Express 26, 31850 (2018)

    ADS  Google Scholar 

  12. H. Xu, Y. Shi, Ultra-compact and highly efficient polarization rotator utilizing multi-mode waveguides. Opt. Lett. 42, 771 (2017)

    ADS  Google Scholar 

  13. Z. Yu, H. Cui, X. Sun, Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett. 42, 3093 (2017)

    ADS  Google Scholar 

  14. D. Chen, X. Xiao, L. Wang, W. Liu, Q. Yang, S. Yu, Highly efficient silicon optical polarization rotators based on mode order conversions. Opt. Lett. 41, 1070 (2016)

    ADS  Google Scholar 

  15. S. M. Mao, L. R. Cheng, X. Mu, S. L. Wu, and H. Y. Fu, Ultra-broadband compact polarization beam splitter based on asymmetric etched directional coupler, in 2020 Conference on Lasers and Electro-Optics Pacific Rim (Cleo-Pr), (2020)

  16. J. Huang, J.B. Yang, D.B. Chen, X. He, Y.X. Han, J.J. Zhang, Z.J. Zhang, Ultra-compact broadband polarization beam splitter with strong expansibility. Photonics Res. 6, 574 (2018)

    Google Scholar 

  17. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, R. Devlin, Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139 (2017)

    ADS  Google Scholar 

  18. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011)

    ADS  Google Scholar 

  19. L. Cong, R. Singh, Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams. Adv. Mater. 32, e2001418 (2020)

    Google Scholar 

  20. M.I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, N.M. Litchinitser, High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261 (2015)

    ADS  Google Scholar 

  21. Y. Wang, D.Y. Zhu, Z.J. Cui, L.S. Yue, X. Zhang, L. Hou, K. Zhang, H. Hu, Properties and sensing performance of all-dielectric metasurface THz absorbers. IEEE Trans. Terahertz Sci. Technol. 10, 599 (2020)

    ADS  Google Scholar 

  22. G. Qu, W. Yang, Q. Song, Y. Liu, C.W. Qiu, J. Han, D.P. Tsai, S. Xiao, Reprogrammable meta-hologram for optical encryption. Nat. Commun. 11, 5484 (2020)

    ADS  Google Scholar 

  23. Z.L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G.P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, X. Li, Facile metagrating holograms with broadband and extreme angle tolerance. Light Sci. Appl. 7, 78 (2018)

    ADS  Google Scholar 

  24. H. Ren, X. Fang, J. Jang, J. Burger, J. Rho, S.A. Maier, Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 15, 948 (2020)

    ADS  Google Scholar 

  25. K. Liao, T. Gan, X. Hu, Q. Gong, AI-assisted on-chip nanophotonic convolver based on silicon metasurface. Nanophotonics 9, 3315 (2020)

    Google Scholar 

  26. X. Niu, X. Hu, Y. Xu, H. Yang, Q. Gong, Ultrafast all-optical polarization switching based on composite metasurfaces with gratings and an Epsilon-near-zero film. Adv. Photonics Res. 2, 2000167 (2021)

    Google Scholar 

  27. Y. Meng, Y. Chen, L. Lu, Y. Ding, A. Cusano, J.A. Fan, Q. Hu, K. Wang, Z. Xie, Z. Liu, Y. Yang, Q. Liu, M. Gong, Q. Xiao, S. Sun, M. Zhang, X. Yuan, X. Ni, Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl. 10, 235 (2021)

    ADS  Google Scholar 

  28. P. Cheben, R. Halir, J.H. Schmid, H.A. Atwater, D.R. Smith, Subwavelength integrated photonics. Nature 560, 565 (2018)

    ADS  Google Scholar 

  29. H. Wang, Y. Yong Zhang, Q.Z. He, L. Sun, S. Yikai, Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv. Opt. Mater. (2018). https://doi.org/10.1002/adom.201801191

    Article  Google Scholar 

  30. D. Ohana, B. Desiatov, N. Mazurski, U. Levy, Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 16, 7956 (2016)

    ADS  Google Scholar 

  31. C. Yao, Y. Wang, J. Zhang, X. Zhang, C. Zhao, B. Wang, S.C. Singh, C. Guo, Dielectric nanoaperture metasurfaces in silicon waveguides for efficient and broadband mode conversion with an ultrasmall footprint. Adv. Opt. Mater. 8(17), 2000529 (2020). https://doi.org/10.1002/adom.202000529

    Article  Google Scholar 

  32. Y. Zhang, Y. He, H. Wang, L. Sun, Y. Su, Ultra-Broadband mode size converter using on-chip metamaterial-based luneburg lens. ACS Photonics 8, 202 (2020)

    Google Scholar 

  33. K. Koshelev, Y. Kivshar, Dielectric resonant metaphotonics. ACS Photonics 8, 102 (2020)

    Google Scholar 

  34. Z. Li, M.H. Kim, C. Wang, Z. Han, S. Shrestha, A.C. Overvig, M. Lu, A. Stein, A.M. Agarwal, M. Loncar, N. Yu, Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat Nanotechnol 12, 675 (2017)

    ADS  Google Scholar 

  35. R. Wang, Q. Wu, W. Cai, Q. Zhang, H. Xiong, B. Zhang, J. Qi, J. Yao, J. Xu, Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface. ACS Photonics 6, 1774 (2019)

    Google Scholar 

  36. W.M. Hao, J. Wang, L. Chen, Plasmonic Metasurfaces enabled ultra-compact broadband waveguide TM-pass polarizer. Ann. Phys. 533, 2000422 (2021)

    Google Scholar 

  37. X. Guo, Y. Ding, X. Chen, Y. Duan, X. Ni, Molding free-space light with guided wave-driven metasurfaces. Sci. Adv. 6, eabb4142 (2020)

    ADS  Google Scholar 

  38. Y. Meng, Z.T. Liu, Z.W. Xie, R.D. Wang, T.C. Qi, F.T. Hu, H. Kim, Q.R. Xiao, X. Fu, Q. Wu, S.H. Bae, M.L. Gong, X.C. Yuan, Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Res. 8, 564 (2020)

    Google Scholar 

  39. Y.B. Zhang, Z.C. Li, W.W. Liu, Z. Li, H. Cheng, S.Q. Chen, J.G. Tian, Spin-selective and wavelength-selective demultiplexing based on waveguide-integrated all-dielectric metasurfaces. Adv. Opt. Mater. 7, 1801273 (2019)

    Google Scholar 

  40. T. He, Y. Meng, Z. Liu, F. Hu, R. Wang, D. Li, P. Yan, Q. Liu, M. Gong, Q. Xiao, Guided mode meta-optics: metasurface-dressed waveguides for arbitrary mode couplers and on-chip OAM emitters with a configurable topological charge. Opt. Express 29, 39406 (2021)

    ADS  Google Scholar 

  41. Z. Wang, H. Yan, S. Chakravarty, H. Subbaraman, X. Xu, D.L. Fan, A.X. Wang, R.T. Chen, Microfluidic channels with ultralow-loss waveguide crossings for various chip-integrated photonic sensors. Opt. Lett. 40, 1563 (2015)

    ADS  Google Scholar 

  42. S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding. Nat. Photonics 1, 641 (2007)

    ADS  Google Scholar 

  43. D. Duval, A.B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L.J. Fernandez, K.E. Zinoviev, C. Dominguez, L.M. Lechuga, Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab Chip 12, 1987 (2012)

    Google Scholar 

  44. Y. Yuan, Z. Huang, X. Zeng, D. Liang, W.V. Sorin, M. Fiorentino, R.G. Beausoleil, High responsivity Si-Ge waveguide avalanche photodiodes enhanced by loop reflector. IEEE J. Sel. Top. Quantum Electron. 28, 1 (2022)

    Google Scholar 

  45. H. Li, W. Bo, W. Tong, J. Dong, X. Zhang, All-optical nonlinear activation function based on germanium silicon hybrid asymmetric coupler. IEEE J. Select. Topics Quantum Electron. (2022). https://doi.org/10.1109/JSTQE.2022.3166510

    Article  Google Scholar 

Download references

Funding

The National Natural Science Foundation of China (NSFC) (61905101), the Natural Science Foundation of Gansu Province (20JR5RA243), and the Fundamental Research Funds for the Central Universities (lzujbky-2020-64).

Author information

Authors and Affiliations

Authors

Contributions

TW contributed to conceptualization, writing, original draft preparation, data curation, and software; HJ contributed to conceptualization, methodology, and supervision; HC performed investigation; JY performed supervision.

Corresponding author

Correspondence to Hao Jia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Jia, H., Chen, H. et al. Flexible guided-wave manipulation using phase-gradient dielectric metasurface antenna array. Eur. Phys. J. D 76, 131 (2022). https://doi.org/10.1140/epjd/s10053-022-00446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00446-y

Navigation