Skip to main content
Log in

Gauge dependence of spontaneous radiation spectrum in a time-dependent relativistic non-perturbative Coulomb field

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Lamb triggered a continuous debate on the gauge choice for atomic interactions with electromagnetic fields, particularly with plane waves and the vacuum field. Modern technologies of Rydberg atoms and relativistic atomic beams make it possible to explore interactions with a more intriguing non-perturbative, adiabatic Coulomb field. In such cases, one would face the well-known tricky issue about the physical significance of the scalar gauge potential when it is time-dependent. We start attacking this issue by studying a simplest system: a one-dimensional oscillator interacting adiabatically with a relativistic charge. We reveal that a gauge dependence much severer than the one Lamb observed is encountered when calculating the transient radiation spectrum of this oscillator by the external-field method, which is currently the only available tool. The obtained peak frequency can differ by 10 MHz or larger for the commonly used Coulomb, Lorentz, and Multipolar gauges. Contrary to the popular view, we explain that such a gauge dependence is not really a disaster, but actually an advantage here: The relativistic bound-state problem is so complicated that a full quantum-field method is still lacking; thus, the external-field approximation cannot be derived and hence not guaranteed. However, by fitting to experimental data, one may always define an effective external field, which may likely be parameterized with the gauge potential in a particular gauge. This effective external field would not only be of phenomenological use, but also shed light on the physical significance of the gauge potential. We thereby encourage further investigations of this fundamental problem with more realistic systems involving Rydberg atoms and relativistic atomic beams, both theoretically and experimentally.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: As it is a theoretical calculation-based work hence no data is generated.]

Notes

  1. Note that including the total H(t) to define the instantaneous eigen-states, thus the interaction term is apparently absent, does not mean that the system will not make quantum transition. The reason is that H(t) may not commute at different times, therefore the eigen-state at one moment is not always the eigen-state later. As is known in the discussion of adiabatic approximation, quantum transitions are avoided only if H(t) varies slowly enough in time.

  2. This can be achieved by choosing the gauge-transformation function in Eq. (3) to be \(\Lambda (x,y,z,t)=f(x,t)+y\cdot A_y(x,0,0,t)+z\cdot A_z(x,0,0,t)\), with \(\partial _x f(x,t)=A_x(x,0,0,t)\). It is an extension of the well-known fact that at a particular point all four components of \(A^\mu \) may be eliminated, and one component of \(A^\mu \) may be eliminated all over the space. For completeness, it is also worthwhile to note that two components of \(A^\mu \) may be eliminated in a particular plane.

References

  1. W.E. Lamb, Phys. Rev. 85, 259 (1952)

    Article  ADS  Google Scholar 

  2. K.H. Yang, Ann. Phys. 101, 62 (1976)

    Article  ADS  Google Scholar 

  3. K.H. Yang, Phys. Lett. A 84, 165 (1981)

    Article  ADS  Google Scholar 

  4. C.K. Au, J. Phys. B: At. Mol. Opt. Phys. 17, L59 (1984)

    Article  ADS  Google Scholar 

  5. W.E. Lamb, R.R. Schlicher, M.O. Scully, Phys. Rev. A 36, 2763 (1987)

    Article  ADS  Google Scholar 

  6. N. Funai, J. Louko, E. Martín-Martínez, Phys. Rev. D 99, 065014 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  7. T. Andersen, Phys. Rep. 397, 157 (2004)

    Article  ADS  Google Scholar 

  8. H.C. Bryant, G.H. Herling, J. Mod. Optics 53, 45 (2006)

    Article  ADS  Google Scholar 

  9. U.D. Jentschura, C.M. Adhikari, Phys. Rev. A 97, 062120 (2018)

    Article  ADS  Google Scholar 

  10. U.D. Jentschura, Phys. Rev. A 69, 052118 (2004)

    Article  ADS  Google Scholar 

  11. R. R. Schlicher, W. Becker, J. Bergou, and M. O. Scully, “Interaction Hamiltonian in Quantum Optics, or: \(\vec{p}\cdot \vec{A}\) vs. \(\vec{E}\cdot \vec{r}\) revisited”, in “Quantum Electrodynamics and Quantum Optics”, edited by A.O. Barut (Plenum, New York, 1984) pp. 405–441

  12. U.D. Jentschura, Phys. Rev. A 94, 022117 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  13. X.S. Chen, W.M. Sun, F. Wang, T. Goldman, Phys. Rev. D 83, 071901(R) (2011)

    Article  ADS  Google Scholar 

  14. E.A. Power, S. Zienau, Philos. Trans. R Soc. Lond. A 251, 427 (1959)

    Article  ADS  Google Scholar 

  15. R.G. Woolley, Proc. R. Soc. Lond. A 321, 557 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  16. V.F. Weisskopf, E.P. Wigner, Z. Phys. 63, 54 (1930)

    Article  ADS  Google Scholar 

  17. B.F. Bayman, F. Zardi, Phys. Rev. C 71, 014904 (2005)

    Article  ADS  Google Scholar 

  18. C.H. Dasso, M.I. Gallardo, H.M. Sofia, A. Vitturi, Phys. Rev. C 73, 034612 (2006)

    Article  ADS  Google Scholar 

  19. S.H. Aulter, C.H. Townes, Phys. Rev. 100, 703 (1955)

    Article  ADS  Google Scholar 

  20. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  21. See, for example, S. Weinberg, The Quantum Theory of Fields Vol. I (Cambridge, New York, 1995), section 13.6

  22. F. Gross, Phys. Rev. C 26, 2203 (1982)

    Article  ADS  Google Scholar 

  23. F. Gross, Ibid 26, 2226 (1982)

    Google Scholar 

  24. W.E. Lamb, R.C. Retherford, Phys. Rev. 72, 241 (1947)

    Article  ADS  Google Scholar 

  25. D.J. Gross, F. Welczek, Phys. Rev. Lett. 30, 1343 (1973)

    Article  ADS  Google Scholar 

  26. H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This is a long-term work that almost all our group members have joined in the discussion, including our graduated fellows. We also benefited from fruitful discussions with many HUST colleagues, especially Jian-Wei Cui, Wei-Tian Deng, Lin Li, and Yi-Qiu Ma, et al. We owe special thanks to two of our foreign faculty members, Ralf Betzholz and Jean-Michel Le Floch, for their warm help in reading and polishing our manuscript. The work had been and was partly supported by the China NSF via Grants No. 11275077 and No. 11535005.

Author information

Authors and Affiliations

Authors

Contributions

X-NC and Y-HL contributed equally to this work under the tutoring of X-SC. The results in the work were independently calculated and cross-checked by X-NC and Y-HL, respectively. All authors participated in the presentation and discussion of this work.

Corresponding author

Correspondence to Xiang-Song Chen.

Appendix A: The scalar potential in different gauges

Appendix A: The scalar potential in different gauges

In this Appendix, we give the details of the scalar potential \(\phi (\vec {x}, t)\) for our system in the commonly used Lorentz, Coulomb, and multipolar gauges. For the Lorentz gauge,

$$\begin{aligned} \phi _{L}=\frac{1}{4 \pi }\left( \frac{-e}{l+x}+\frac{-e}{l-x}+\frac{N e}{\sqrt{(x-L(t))^{2}+\left( 1-\beta ^{2}\right) Y^{2}}}\right) ,\nonumber \\ \end{aligned}$$
(A1)

and for Coulomb gauge,

$$\begin{aligned} \phi _{C}=\frac{1}{4 \pi }\left( \frac{-e}{l+x}+\frac{-e}{l-x}+\frac{N e}{\sqrt{(x-L(t))^{2}+Y^{2}}}\right) .\nonumber \\ \end{aligned}$$
(A2)

Here, x is the coordinate of the electron, L(t) is the coordinate of the charge cluster at time t. The subscripts LC refer to expressions in the Lorentz and Coulomb gauges, respectively, and a subscript G will denote a general gauge.

By applying the PZW transformation (12), one obtains \(\phi _{M}\) in the multipolar gauge,

$$\begin{aligned} \phi _{M}=\left\{ \phi _G(\vec {x}_0,t)-\int _{0}^{1} d \lambda \vec {E}\left( \lambda \vec {x}+(1-\lambda ) \vec {x}_{0}, t\right) \cdot \left( \vec {x}-\vec {x}_{0}\right) \right\} .\nonumber \\ \end{aligned}$$
(A3)

As we explained in the text, we Taylor-expand \(\phi (\vec {x}, t)\). For the Lorentz gauge,

$$\begin{aligned} \phi _{L}\approx & {} \frac{1}{4 \pi }\left\{ \frac{-e}{x_{0}+l}-\frac{-e}{x_{0}-l}+\frac{N e}{\sqrt{\left( x_{0}-L(t)\right) ^{2}+\left( 1-\beta ^{2}\right) Y^{2}}}\right. \nonumber \\&-\left( \frac{-e}{\left( x_{0}+l\right) ^{2}}-\frac{-e}{\left( x_{0}-l\right) ^{2}} \right. \nonumber \\&\left. +\frac{N e\left( x_{0}-L(t)\right) }{\sqrt{\left( x_{0}-L(t)\right) ^{2}+\left( 1-\beta ^{2}\right) Y^{2}}^{3}}\right) \left( x-x_{0}\right) \nonumber \\&+\left( \frac{-e}{\left( x_{0}+l\right) ^{3}}-\frac{-e}{\left( x_{0}-l\right) ^{3}}\right. \nonumber \\&\left. \left. -\frac{1}{2}\left( \frac{N e}{\sqrt{\left( x_{0}-L(t)\right) ^{2}+\left( 1-\beta ^{2}\right) Y^{2}}^{3}} \right. \right. \right. \nonumber \\&\left. \left. \left. -\frac{3 N e\left( x_{0}-L(t)\right) ^{2}}{\sqrt{\left( x_{0}-L(t)\right) ^{2}+\left( 1-\beta ^{2}\right) Y^{2}}^5}\right) \right) \left( x-x_{0}\right) ^{2}\right\} .\nonumber \\ \end{aligned}$$
(A4)

For the Coulomb gauge,

$$\begin{aligned} \phi _{C}\approx & {} \frac{1}{4 \pi }\left\{ \frac{-e}{x_{0}+l}-\frac{-e}{x_{0}-l}+\frac{N e}{\sqrt{\left( x_{0}-L(t)\right) ^{2}+Y^{2}}}\right. \nonumber \\&-\left( \frac{-e}{\left( x_{0}+l\right) ^{2}}-\frac{-e}{\left( x_{0}-l\right) ^{2}} \right. \nonumber \\&\left. +\frac{N e\left( x_{0}-L(t)\right) }{\sqrt{\left( x_{0}-L(t)\right) ^{2}+Y^{2}}^{3}}\right) \left( x-x_{0}\right) \nonumber \\&\left. +\left( \frac{-e}{\left( x_{0}+l\right) ^{3}}-\frac{-e}{\left( x_{0}-l\right) ^{3}}-\frac{1}{2}\left( \frac{N e}{\sqrt{\left( x_{0}-L(t)\right) ^{2}+Y^{2}}^{3}} \right. \right. \right. \nonumber \\&\left. \left. \left. -\frac{3 N e\left( x_{0}-L(t)\right) ^{2}}{\sqrt{\left( x_{0}-L(t)\right) ^{2}+Y^{2}}^{5}}\right) \right) \left( x-x_{0}\right) ^{2}\right\} . \end{aligned}$$
(A5)

And for the multipolar gauge,

$$\begin{aligned} \phi _{M}\approx & {} \phi _G(\vec {x}_0, t)+\frac{1}{4\pi }\left\{ -\left( \frac{-e}{\left( x_{0}+l\right) ^{2}}-\frac{-e}{\left( x_{0}-l\right) ^{2}}\right. \right. \nonumber \\&+\, \left. \left. \frac{N e\left( 1-\beta ^{2}\right) \left( x_{0}-L(t)\right) }{\sqrt{\left( x_{0}-L(t)\right) ^{2}+\left( 1-\beta ^{2}\right) Y^{2}}^{3}}\right) \left( x-x_{0}\right) \right. \nonumber \\&+\left( \frac{-e}{\left( x_{0}+l\right) ^{3}}-\frac{-e}{\left( x_{0}-l\right) ^{3}}\right. \nonumber \\&\left. \left. -\frac{1}{2}\left( \frac{N e\left( 1-\beta ^{2}\right) }{\sqrt{\left( x_{0}-L(t)\right) ^{2}+\left( 1-\beta ^{2}\right) Y^{2}}^{3}} \right. \right. \right. \nonumber \\&\left. \left. \left. -\frac{3 N e\left( 1-\beta ^{2}\right) \left( x_{0}-L(t)\right) ^{2}}{\sqrt{\left( x_{0}-L(t)\right) ^{2}+\left( 1-\beta ^{2}\right) Y^{2}}^{5}}\right) \right) \left( x-x_{0}\right) ^{2}\right\} .\nonumber \\ \end{aligned}$$
(A6)

The value of \(x_{0}\) in each gauge is found by solving \(\left. \partial _{x} \phi _{G}(x, t)\right| _{x=x_{0}}=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XN., Luo, YH. & Chen, XS. Gauge dependence of spontaneous radiation spectrum in a time-dependent relativistic non-perturbative Coulomb field. Eur. Phys. J. D 76, 84 (2022). https://doi.org/10.1140/epjd/s10053-022-00407-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00407-5

Navigation