Skip to main content

A Perspective on External Field QED

  • Chapter
  • First Online:
Quantum Mathematical Physics

Abstract

In light of the conference Quantum Mathematical Physics held in Regensburg in 2014, we give our perspective on the external field problem in quantum electrodynamics (QED), i.e., QED without photons in which the sole interaction stems from an external, time-dependent, four-vector potential. Among others, this model was considered by Dirac, Schwinger, Feynman, and Dyson as a model to describe the phenomenon of electron-positron pair creation in regimes in which the interaction between electrons can be neglected and a mean field description of the photon degrees of freedom is valid (e.g., static field of heavy nuclei or lasers fields). Although it may appear as second easiest model to study, it already bares a severe divergence in its equations of motion preventing any straight-forward construction of the corresponding evolution operator. In informal computations of the vacuum polarization current this divergence leads to the need of the so-called charge renormalization . In an attempt to provide a bridge between physics and mathematics, this work gives a review ranging from the heuristic picture to our rigorous results in a way that is hopefully also accessible to non-experts and students. We discuss how the evolution operator can be constructed, how this construction yields well-defined and unique transition probabilities, and how it provides a family of candidates for charge current operators without the need of removing ill-defined quantities. We conclude with an outlook of what needs to be done to identify the physical charge current among this family.

Mathematics Subject Classification (2010). Primary: 81V10; Secondary: 81T08, 46N50

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.D. Anderson, The positive electron. Phys. Rev. 43(6), 491–494 (1933)

    Article  Google Scholar 

  2. C. Bär, N. Ginoux, F. Pfäffle, Wave Equations on Lorentzian Manifolds and Quantization (European Mathematical Society, Zürich, 2007)

    Book  MATH  Google Scholar 

  3. D.-A. Deckert, Electrodynamic Absorber Theory – A Mathematical Study (Der Andere Verlag, 2010)

    Google Scholar 

  4. D.-A. Deckert, D. Dürr, F. Merkl, M. Schottenloher, Time-evolution of the external field problem in quantum electrodynamics. J. Math. Phys. 51(12), 122301 (2010)

    Google Scholar 

  5. D.-A. Deckert, F. Merkl, Dirac equation with external potential and initial data on Cauchy surfaces. J. Math. Phys. 55(12), 122305 (2014)

    Google Scholar 

  6. D.-A. Deckert, F. Merkl, External Field QED on Cauchy Surfaces (In preparation)

    Google Scholar 

  7. J. Derezinski, C. Gérard, Mathematics of Quantization and Quantum Fields (Cambridge University Press, Cambridge, 2013)

    Book  MATH  Google Scholar 

  8. J. Dimock, Dirac quantum fields on a manifold. Trans. Am. Math. Soc. 269(1), 133–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. P.A.M. Dirac, Theorie du Positron, Selected Papers on Quantum Electrodynamics, ed. by J. Schwinger (Dover Publications Inc., New York, 1934)

    Google Scholar 

  10. H. Fierz, G. Scharf, Particle interpretation for external field problems in QED. Helv. Phys. Acta. Phys. Theor. 52(4), 437–453 (1980)

    MathSciNet  Google Scholar 

  11. F. Finster, The Continuum Limit of Causal Fermion Systems (In preparation). Book based on the preprints arXiv:0908.1542; arXiv:1211.3351; arXiv:1409.2568

    Google Scholar 

  12. F. Finster, J. Kleiner, Causal Fermion Systems as a Candidate for a Unified Physical Theory. arXiv:1502.03587

    Google Scholar 

  13. F. Finster, J. Kleiner, J.-H. Treude, An Introduction to the Fermionic Projector and Causal Fermion Systems (In preparation)

    Google Scholar 

  14. F. Finster, J. Kleiner, J.-H. Treude, An introduction to the fermionic projector and causal fermion systems. Trans. Am. Math. Soc. (2012)

    Google Scholar 

  15. J.M. Gracia-Bondia, The phase of the scattering matrix. Phys. Lett. B 482(1–3), 315–322 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Gravejat, C. Hainzl, M. Lewin, E. Séré, Construction of the Pauli–Villars-Regulated Dirac vacuum in electromagnetic fields. Archiv. Ration. Mech. Anal. 208(2), 603–665 (2013)

    Article  MATH  Google Scholar 

  17. W. Greiner, D.A. Bromley, Relativistic Quantum Mechanics. Wave Equations, 3rd edn. (Springer, Berlin/New York, 2000)

    Google Scholar 

  18. F. John, Partial Differential Equations (Springer, New York, 1982)

    Book  Google Scholar 

  19. B.S. Kay, R.M. Wald, Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate killing horizon. Phys. Rep. 207(2), 49–136 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. O. Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. für Phys. 53(3–4), 157–165 (1929)

    Article  MATH  Google Scholar 

  21. E. Langmann, J. Mickelsson, Scattering matrix in external field problems. J. Math. Phys. 37(8), 3933–3953 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Mickelsson, Vacuum polarization and the geometric phase: gauge invariance. J. Math. Phys. 39(2), 831—837 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Mickelsson, The phase of the scattering operator from the geometry of certain infinite-dimensional groups. Lett. Math. Phys. 104(10), 1189–1199 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Pickl, D. Dürr, Adiabatic pair creation in heavy-ion and laser fields. Europhys. Lett. 81(4), 40001 (2008)

    Google Scholar 

  25. H. Ringström, The Cauchy Problem in General Relativity (European Mathematical Society, Zürich, 2009)

    Book  MATH  Google Scholar 

  26. S.N.M. Ruijsenaars, Charged particles in external fields. I. Classical theory. J. Math. Phys. 18(4), 720–737 (1977)

    MathSciNet  Google Scholar 

  27. S.N.M. Ruijsenaars, Charged particles in external fields. II. The quantized Dirac and Klein-Gordon theories. Commun. Math. Phys. 52(3), 267–294 (1977)

    MathSciNet  Google Scholar 

  28. G. Scharf, Finite Quantum Electrodynamics: The Causal Approach, 2nd edn. (Springer, Berlin/New York, 1995)

    Book  MATH  Google Scholar 

  29. E. Schrödinger, Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Berliner Ber. 418–428 (1930)

    Google Scholar 

  30. D. Shale, W.F. Stinespring, Spinor representations of infinite orthogonal groups. J. Math. Mech. 14, 315–322 (1965)

    MathSciNet  MATH  Google Scholar 

  31. M.E. Taylor, Partial Differential Equations III (Springer, New York, 2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work has partially been funded by the Elite Network of Bavaria through the JRG “Interaction between Light and Matter”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk-André Deckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deckert, DA., Merkl, F. (2016). A Perspective on External Field QED. In: Finster, F., Kleiner, J., Röken, C., Tolksdorf, J. (eds) Quantum Mathematical Physics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-26902-3_16

Download citation

Publish with us

Policies and ethics