Skip to main content
Log in

Non-relativistic bound state solutions with α-deformed Kratzer-type potential using the super-symmetric WKB method: application to theoretic-information measures

  • Regular Article – Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work, we studied the bound states and quantum theoretic-information measurements of an \(\alpha\)-deformed Kratzer-type potential with the Schrodinger equation. The ground state wave function in position-momentum spaces and the energy spectra equations for arbitrary quantum numbers are obtained in closed-form via the super-symmetric WKB method and Fourier transform. The obtained energy equation is bounded and reduces to the molecular Kratzer-type energy and the hydrogenic Coulomb’s energy upon proper adjustment of potential parameters. The wave function was used to obtain the Fisher, Shannon, Rényi and Tsallis theoretic-information measures numerically. Our results for the information measures obey the local Fisher inequality and the Bialynicki-Birula–Mycielski inequality. The Rényi and Tsallis entropies in position-momentum spaces were obtained for the index number \(q = 0.5\) and \(q = 2\) as a function of the potential parameter. The results of the theoretic-information quantities and probability densities revealed that the potential parameters strongly influence the localization and delocalization of the position of a nano particle.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.A. Fisher, Proc. Camb. Philos. Soc. 22, 700 (1925)

    Article  ADS  Google Scholar 

  2. P. Sánchez-Moreno, A.R. Plastino, J.S. Dehesa, J. Phys. A: Math. Theor. 44, 065301 (2011)

    Article  ADS  Google Scholar 

  3. A. Plastino, G. Bellomo, A.R. Plastino, Adv. Math. Phys. Article ID: 1206981 (2015)

  4. C.E. Shannon, Bell. Syst. Tech. J. 27, 379 (1948)

    Article  Google Scholar 

  5. A. Rényi, On measures of information theory Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability (Berkeley, CA: Berkeley University Press, 1960)

  6. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  7. E. Romera, P. Sanchez-Moreno, J.S. Dehesa, Chem. Phys. Lett. 414, 468 (2005)

    Article  ADS  Google Scholar 

  8. L.L. Campbell, Inform. Control 8, 423 (1965)

    Article  Google Scholar 

  9. A. Bialas, W. Czyz, Acta Phys. Pol. B 31, 2803 (2000)

    ADS  Google Scholar 

  10. A. Bialas, W. Czyz, Phys. Rev. D 61, 074021 (2000)

    Article  ADS  Google Scholar 

  11. O. Olendski, Eur. J. Phys. 40, 025402 (2019)

  12. I.R. Klebanov, S.S. Pufu, S. Sachdev, B.R. Safdi, J. High Energy Phys. 2012, 74 (2012)

    Article  Google Scholar 

  13. B. Chen, J. Zhang, J. High Energy Phys. 2013, 164 (2013)

    Article  ADS  Google Scholar 

  14. X. Dong, Nat. Commun. 7, 12472 (2016)

    Article  ADS  Google Scholar 

  15. M. Costa, A.L. Goldberger, C.K. Peng, Phys. Rev. E. 71, 021906 (2005)

  16. P. Jizba, H. Kleinert, M. Shefaat, Physica A. 391, 2971 (2012)

    Article  ADS  Google Scholar 

  17. J.S. Dehesa, R. Gonzalez-Ferez, P. Sanchez-Moreno, J. Phys. A: Math. Theor. 40, 1845 (2007)

    Article  ADS  Google Scholar 

  18. H. Cramer, Mathematical methods of statistics (Princeton University Press, Princeton, New Jersey, 1946)

    MATH  Google Scholar 

  19. C.R. Rao, Bull. Calcutta Math. Soc. 37, 81 (1945)

    MathSciNet  Google Scholar 

  20. I. Bialynicki-Birula, J. Mycielski, Commun. Math. Phys. 44, 129 (1975)

    Article  ADS  Google Scholar 

  21. I.B. Okon, C.N. Isonguyo, A.D. Antia, A.N. Ikot, O.O. Popoola, Comm. Theor. Phys. 72, 065104 (2020)

    Article  ADS  Google Scholar 

  22. J.S. Dehesa, S. Lopez-Rosa, B. Olmos, R.J. Yanez, J. Comput. App. Math. 179, 185 (2005)

    Article  ADS  Google Scholar 

  23. E. Omugbe, O.E. Osafile, I.B. Okon, E.A. Enaibe, M.C. Onyeaju, Mol. Phys. 119, e1909163 (2021)

    Article  ADS  Google Scholar 

  24. P.A. Bouvrie, J.C. Angulo, J.S. Dehesa, Phys. A. 390, 2215 (2011)

    Article  MathSciNet  Google Scholar 

  25. W.Y. Yahya, K.J. Oyewumi, K.D. Sen, Int. J. Quant. Chem. 115, 1543 (2015)

    Article  Google Scholar 

  26. S.A. Najafizade, H. Hassanabadi, S. Zarrinkammar, Can. J. Phys. 94, 1085 (2016)

    Article  ADS  Google Scholar 

  27. P.O. Amadi, A.N. Ikot, A.T. Ngiangia, U.S. Okorie, G.J. Rampho, H.Y. Abdullah, Int. J. Quant. Chem 120, e26246 (2020)

    Article  Google Scholar 

  28. D. Puertas-Centeno, N.M. Temme, I.V. Toranzo, J.D. Dehesa, JMP. 58, 103302 (2017)

    ADS  Google Scholar 

  29. P. Sanchez-Moreno, S. Zozor, J.S. Dehesa, J. Math. Phys. 52, 022105 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  30. C.N. Isonguyo, K.J. Oyewumi, O.S. Oyun, Int. J. Quant. Chem. 118, e25620 (2018)

    Article  Google Scholar 

  31. A. Kratzer, Z Phys. 3, 289 (1920)

    Article  ADS  Google Scholar 

  32. L. Fortunato, A. Vitturi, J. Phys. G: Nucl. Part. Phys. 29, 1341 (2003)

    Article  ADS  Google Scholar 

  33. D. Bonatsos, P.E. Georgoudis, N. Minkov, D. Petrellis and C. Quesne, Phys. Rev. C 88 (2013)

  34. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Hruska, W. Keung, U. Sukhatme, Phy. Rev. A. 55, 3345 (1997)

    Article  ADS  Google Scholar 

  36. R. Dutt, A. Khare, U. Sukhatme, Am. J. Phys. 59, 723 (1991)

    Article  ADS  Google Scholar 

  37. S.M. Ikhdair, R. Sever, J. Math. Chem. 45, 1137 (2009)

    Article  MathSciNet  Google Scholar 

  38. O. Bayrak, I. Boztosun, H. Ciftci, Int. J. Quant. Chem. 107, 540 (2007)

    Article  ADS  Google Scholar 

  39. L. Fortunato, A. Vitturi, J. Phys. G: Nucl. Part. Phys. 30, 627 (2004)

    Article  ADS  Google Scholar 

  40. P. Buganu, L. Fortunato, J. Phys. G: Nucl. Part. Phys. 43, 093003 (2016)

    Article  ADS  Google Scholar 

  41. E. Omugbe, O.E. Osafile, I.B. Okon, E.P. Inyang, E.S. William, A. Jahanshir, Few-Body Syst. 63, 6 (2022)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EO, CAO and IBO wrote the first draft. ESE, EPI and USO carried out result confirmation and editing. AJ and OEO carried out literature search and proofreading.

Corresponding author

Correspondence to E. Omugbe.

Ethics declarations

Data Availability Statement

The data used in this work were obtained numerically from the analytical solutions and equations within the article, therefore no data were used.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omugbe, E., Osafile, O.E., Okon, I.B. et al. Non-relativistic bound state solutions with α-deformed Kratzer-type potential using the super-symmetric WKB method: application to theoretic-information measures. Eur. Phys. J. D 76, 72 (2022). https://doi.org/10.1140/epjd/s10053-022-00395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00395-6

Navigation