Skip to main content
Log in

Any\(\mathbf {\, }l\)-State Energy of the Spinless Salpeter Equation Under the Cornell Potential by the WKB Approximation Method: An Application to Mass Spectra of Mesons

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this work, we investigated the mass spectra of mesons under the spinless-Salpeter equation implemented with the Cornell potential using the semi-classical WKB approximation approach. The present results are applied for calculating the mass spectra of heavy mesons such as charmonium \({c\bar{{c}}}\), bottomonium \({b\bar{{b}}}\) and the heavy-light mesons such as charm-strange mesons. We obtained the mass spectrum free parameters of the meson systems by fitting our analytical solution with experimental data and solve the resulting non-linear equations simultaneously via numerical approach. The masses of the mesons systems obtained with the Salpeter equation for different quantum states are in excellent agreement with the masses obtained by the relativistic, non-relativistic wave equations and available experimental data reported in existing literature. The bound state energies for both the Salpeter equation and Schrodinger equations under the Coulomb potential were also obtained as special cases. The Cornell potential and eigen energy of the Salpeter equation obtained by the semi-classical approach provide satisfying results in comparison with experimental data and the work of other researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Ikot, C.N. Isonguyo, Y.E. Chad-Umoren, H. Hassanabadi, Acta Phys. Pol., A 127, 674 (2015)

    Article  ADS  Google Scholar 

  2. H. Sazdjian, Phys. Lett. B 156, 381 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Panahi, S. Zarrinkamar, M. Baradaran, Eur. Phy. J. Plus. 35, 131 (2016)

    Google Scholar 

  4. E.E. Salpeter, H.A. Bethe, Phys. Rev. 84, 1232 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  5. L. Chang, C.D. Robert, Phys. Rev. Lett. 103, 081601 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Ghominejad, S. Hassanabadi, Eur. Phys. J. Plus. 128, 59 (2013)

    Article  Google Scholar 

  7. P. Maris, C.D. Robert, Phys. Rev. C 56, 3369 (1997)

    Article  ADS  Google Scholar 

  8. E. Omugbe, Can. J. Phys. 98, 1125 (2020)

    Article  ADS  Google Scholar 

  9. M. Abu-Shady, T. A. Abedel-Karim, Sh. Y. Ezz-Alarab, Journal of the Egyptian Mathematical Society. 27 (2019)

  10. H. Mansour, A. Gamal, Adv. High Energy Phys. 2018, 7269657 (2018)

    Article  Google Scholar 

  11. R.N. Faustov, V.O. Galkin, A.V. Tatarintsev, A.S. VshivTsev, Int. Jour. Mod. Phys. A. 15, 209 (2009)

    Article  ADS  Google Scholar 

  12. E. P. Inyang, E. P. Inyang, E. S. William, E. E. Ibekwe, I.O.Akpan, (2020) http://arxiv.org abs/2012.10639

  13. S. Ikdair, R. Sever, Cent. Eur. J. Phys. 5, 516 (2007)

    Google Scholar 

  14. E. Omugbe, O.E. Osafile, M.C. Onyeaju, Adv. High Energy Phys. 2020, 5901464 (2020)

    Article  Google Scholar 

  15. M. N. Sergeenko, 2019. arXiv:1909.10511

  16. E.P. Inyang, E.P. Inyang, J.E. Ntibi, E.E. Ibekwe, E.S. William, Indian J. Phys. (2021). https://doi.org/10.1007/s12648-020-01933-x

    Article  Google Scholar 

  17. I.O. Akpan, E.P. Inyang, E.P. Inyang, E.S. William, Rev. Max. Fis. 67, 490 (2021)

    Google Scholar 

  18. E. P. Inyang, E. P. Inyang, J. E. Ntibi, E.E. Ibekwe, E. S. William. https://arxiv.org/abs/2101.06389

  19. E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang, S.A. Ekong, Eur. Phys. J. Plus 87, 136 (2021). https://doi.org/10.1140/epjp/s13360-021-01090-y

    Article  Google Scholar 

  20. E. Syahronic, A. Suparmi, C. Cari, J. Phys: Conf. Ser. 795, 012027 (2017)

    Google Scholar 

  21. C. Cari, A. Suparmi, M. Yunianto, B.N. Pratini, J. Phys: Conf. Ser. 776, 012092 (2016)

    Google Scholar 

  22. R.K. Roychoudhury, Y.P. Varshni, J. Phys. A: Math. Gen. 21, 3025 (1988)

    Article  ADS  Google Scholar 

  23. R.L. Hall, N. Saad, Open Phys. 13, 83 (2015)

    Article  Google Scholar 

  24. M. Abu-Shady, Int. J. Appl. Math. Phys. 2, 16 (2016)

    Google Scholar 

  25. H.S. Chung, J. Lee, D. Kang, J. Korean Phys. Soc. 52, 1151 (2008)

    Article  ADS  Google Scholar 

  26. A. vega, J. Flores, \(P\)ramana - J Phys 87, 73 (2016)

  27. S. Hassanabadi, A.A. Rajabi, S. Zarrinkamar, Mod. Phys. Lett. A 27, 1250057 (2012)

    Article  ADS  Google Scholar 

  28. S. Zarrinkamar, Z. Naturforsch. 71, 1027 (2016)

    Article  ADS  Google Scholar 

  29. L.P. Fulcher, Phy. Rev. D. 50, 1 (1994)

    Article  ADS  Google Scholar 

  30. A.D. Antia, I.B. Okon, E.B. Umoren, C.N. Isonguyo, Ukr. J. Phys. 64, 27 (2019)

    Article  Google Scholar 

  31. H. Hassanabadi, S. Zarrinkamar, B.H. Yazarloo, Chin. J. Phys. 50, 783 (2012)

    Google Scholar 

  32. S. Zarrinkamar, A.A. Rajabi, H. Hassanabadi, Few-Body Systems 52, 165 (2012)

  33. Y.P. Varshni, Phys. A. Math. Gen. 25, 5761 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  34. P. Roy, R. Roychoudhury, Y.P. Varshni, J. Phys. A: Math. Gen. 21, 1589 (1988)

    Article  ADS  Google Scholar 

  35. D.J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall Inc., Hoboken, 1995)

    MATH  Google Scholar 

  36. R.E. Langer, Phys. Rev. 51, 669 (1937)

    Article  ADS  Google Scholar 

  37. M.N. Sergeenko, Mod. Phys. Lett. A 15, 83 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  38. E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, E.S. William, Can. J. Phys. (2021). https://doi.org/10.1139/cjp-20200578

    Article  Google Scholar 

  39. C. Patrignani, Particle Data Group. Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  40. K.A. Olive, Particle Data Group. Chin. Phys. C 38, 090001 (2014)

    Article  ADS  Google Scholar 

  41. S. Godfrey, K. Moats, Phys. Rev. D. 90, 117501 (2014)

    Article  ADS  Google Scholar 

  42. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D. 67, 014027 (2003)

    Article  ADS  Google Scholar 

  43. J. Beringer et al., Phys. Rev. D. 86, 010001 (2012)

    Article  ADS  Google Scholar 

  44. S. Godfrey, K. Moats, Phys. Rev. D. 93, 034035 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Omugbe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omugbe, E., Osafile, O.E., Okon, I.B. et al. Any\(\mathbf {\, }l\)-State Energy of the Spinless Salpeter Equation Under the Cornell Potential by the WKB Approximation Method: An Application to Mass Spectra of Mesons. Few-Body Syst 63, 6 (2022). https://doi.org/10.1007/s00601-021-01705-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01705-1

Navigation