Skip to main content
Log in

Scrambling and quantum feedback in a nanomechanical system

  • Regular Article – Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The question of how swiftly entanglement spreads over a system has attracted vital interest. In this regard, the out-of-time-ordered correlator (OTOC) is a quantitative measure of the entanglement spreading process. Particular interest concerns the propagation of quantum correlations in the lattice systems, e.g., spin chains. In a seminal paper of Roberts et al. (J. High Energy Phys. 03:051, 2015), the concept of the OTOC’s radius was introduced. The radius of the OTOC defines the front line reached by the spread of entanglement. Beyond this radius operators commute. In the present work, we propose a model of two nanomechanical systems coupled with two nitrogen-vacancy (NV) center spins. Oscillators are coupled to each other directly, while NV spins are not. Therefore, the correlation between the NV spins may arise only through the quantum feedback exerted from the first NV spin to the first oscillator and transferred from the first oscillator to the second oscillator via the direct coupling. Thus, nonzero OTOC between NV spins quantifies the strength of the quantum feedback. We show that NV spins cannot exert quantum feedback on classical nonlinear oscillators. We also discuss inherently quantum case with a linear quantum harmonic oscillator indirectly coupling the two spins and verify that in the classical limit of the oscillator, the OTOC vanishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the data is already displayed in the figures of the manuscript.]

References

  1. M. Heyl, Dynamical quantum phase transitions: a review. Rep. Prog. Phys. 81(5), 054001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Heyl, F. Pollmann, B. Dóra, Detecting equilibrium and dynamical quantum phase transitions in ising chains via out-of-time-ordered correlators. Phys. Rev. Lett. 121, 016801 (2018)

    Article  ADS  Google Scholar 

  3. M. Heyl, A. Polkovnikov, S. Kehrein, Dynamical quantum phase transitions in the transverse-field ising model. Phys. Rev. Lett. 110, 135704 (2013)

    Article  ADS  Google Scholar 

  4. R. Vosk, E. Altman, Dynamical quantum phase transitions in random spin chains. Phys. Rev. Lett. 112, 217204 (2014)

    Article  ADS  Google Scholar 

  5. J. Eisert, M. Friesdorf, C. Gogolin, Quantum many-body systems out of equilibrium. Nat. Phys. 11(2), 124–130 (2015)

    Article  Google Scholar 

  6. P. Ponte, Z. Papić, F. Huveneers, D.A. Abanin, Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015)

    Article  ADS  Google Scholar 

  7. M. Azimi, L. Chotorlishvili, S.K. Mishra, S. Greschner, T. Vekua, J. Berakdar, Helical multiferroics for electric field controlled quantum information processing. Phys. Rev. B 89, 024424 (2014)

    Article  ADS  Google Scholar 

  8. M. Azimi, M. Sekania, S.K. Mishra, L. Chotorlishvili, Z. Toklikishvili, J. Berakdar, Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain. Phys. Rev. B 94, 064423 (2016)

    Article  ADS  Google Scholar 

  9. I. Medina, S.V. Moreira, F.L. Semião, Quantum versus classical transport of energy in coupled two-level systems. Phys. Rev. A 103, 052216 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  10. E.H. Lieb, D.W. Robinson, The finite group velocity of quantum spin systems. Commun. Math. Phys. 28(3), 251–257 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  11. A.I. Larkin, Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity. J. Exp. Theor. Phys. 28(6), 1200 (1969)

    ADS  Google Scholar 

  12. J. Maldacena, S.H. Shenker, D. Stanford, A bound on chaos. J. High Energy Phys. 2016(8), 106 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. D.A. Roberts, D. Stanford, L. Susskind, Localized shocks. J. High Energy Phys. 2015(3), 51 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Iyoda, T. Sagawa, Scrambling of quantum information in quantum many-body systems. Phys. Rev. A 97, 042330 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Chapman, A. Miyake, Classical simulation of quantum circuits by dynamical localization: analytic results for pauli-observable scrambling in time-dependent disorder. Phys. Rev. A 98, 012309 (2018)

    Article  ADS  Google Scholar 

  16. B. Swingle, D. Chowdhury, Slow scrambling in disordered quantum systems. Phys. Rev. B 95, 060201 (2017)

    Article  ADS  Google Scholar 

  17. M.J. Klug, M.S. Scheurer, J. Schmalian, Hierarchy of information scrambling, thermalization, and hydrodynamic flow in graphene. Phys. Rev. B 98, 045102 (2018)

    Article  ADS  Google Scholar 

  18. A. del Campo, J. Molina-Vilaplana, J. Sonner, Scrambling the spectral form factor: unitarity constraints and exact results. Phys. Rev. D 95, 126008 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Campisi, J. Goold, Thermodynamics of quantum information scrambling. Phys. Rev. E 95, 062127 (2017)

    Article  ADS  Google Scholar 

  20. S. Grozdanov, K. Schalm, V. Scopelliti, Black hole scrambling from hydrodynamics. Phys. Rev. Lett. 120, 231601 (2018)

    Article  ADS  Google Scholar 

  21. A.A. Patel, D. Chowdhury, S. Sachdev, B. Swingle, Quantum butterfly effect in weakly interacting diffusive metals. Phys. Rev. X 7, 031047 (2017)

    Google Scholar 

  22. V. Khemani, A. Vishwanath, D.A. Huse, Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws. Phys. Rev. X 8, 031057 (2018)

    Google Scholar 

  23. T. Rakovszky, F. Pollmann, C.W.V. Keyserlingk, Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation. Phys. Rev. X 8, 031058 (2018)

    Google Scholar 

  24. S.V. Syzranov, A.V. Gorshkov, V. Galitski, Out-of-time-order correlators in finite open systems. Phys. Rev. B 97, 161114 (2018)

    Article  ADS  Google Scholar 

  25. P. Hosur, X.-L. Qi, D.A. Roberts, B. Yoshida, Chaos in quantum channels. J. High Energy Phys. 2016(2), 4 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. N. Yunger Halpern, Jarzynski-like equality for the out-of-time-ordered correlator. Phys. Rev. A 95, 012120 (2017)

    Article  ADS  Google Scholar 

  27. E. Hamza, R. Sims, G. Stolz, Dynamical localization in disordered quantum spin systems. Commun. Math. Phys. 315(1), 215–239 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. C. Hainaut, P. Fang, A. Rançon, J.-F. Clément, P. Szriftgiser, J.-C. Garreau, C. Tian, R. Chicireanu, Experimental observation of a time-driven phase transition in quantum chaos. Phys. Rev. Lett. 121(13), 134101 (2018)

    Article  Google Scholar 

  29. A.K. Naik, M.S. Hanay, W.K. Hiebert, X.L. Feng, M.L. Roukes, Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 4(7), 445 (2009)

    Article  ADS  Google Scholar 

  30. A.D.O. Connell, M. Hofheinz, M. Ansmann, Radoslaw C. Bialczak, M. Lenander, Erik Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, John M. Martinis, A.N. Cleland, Quantum ground state and single-phonon control of a mechanical resonator. Nature 464(7289), 697 (2010)

    Article  ADS  Google Scholar 

  31. T.P. MayerAlegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T. Hill, D.E. Chang, O. Painter, Electromagnetically induced transparency and slow light with optomechanics. Nature 472(7341), 69 (2011)

    Article  ADS  Google Scholar 

  32. K. Stannigel, P. Rabl, A.S. Sørensen, P. Zoller, M.D. Lukin, Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105(22), 220501 (2010)

    Article  ADS  Google Scholar 

  33. A.H. Safavi-Naeini, O. Painter, Proposal for an optomechanical traveling wave phonon-photon translator. New J. Phys. 13(1), 013017 (2011)

    Article  ADS  Google Scholar 

  34. S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T.W. Hänsch, P. Treutlein, Realization of an optomechanical interface between ultracold atoms and a membrane. Phys. Rev. Lett. 107(22), 223001 (2011)

    Article  ADS  Google Scholar 

  35. M. Eichenfield, J. Chan, R.M. Camacho, K.J. Vahala, O. Painter, Optomechanical crystals. Nature 462(7269), 78–82 (2009)

    Article  ADS  Google Scholar 

  36. A.H. Safavi-Naeini, J. Chan, J. Hill, T.P. Mayer Alegre, A. Krause, O. Painter, Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108(3), 033602 (2012)

    Article  ADS  Google Scholar 

  37. N. Brahms, T. Botter, S. Schreppler, D.W.C. Brooks, D.M. Stamper-Kurn, Optical detection of the quantization of collective atomic motion. Phys. Rev. Lett. 108(13), 133601 (2012)

    Article  ADS  Google Scholar 

  38. A. Nunnenkamp, K. Børkje, S.M. Girvin, Cooling in the single-photon strong-coupling regime of cavity optomechanics. Phys. Rev. A 85(5), 051803(R) (2012)

    Article  ADS  Google Scholar 

  39. F.Y. Khalili, H. Miao, H. Yang, A.H. Safavi-Naeini, O. Painter, Y. Chen, Quantum back-action in measurements of zero-point mechanical oscillations. Phys. Rev. A 86(3), 033602 (2012)

    Article  Google Scholar 

  40. C.P. Meaney, R.H. McKenzie, G.J. Milburn, Quantum entanglement between a nonlinear nanomechanical resonator and a microwave field. Phys. Rev. E 83(5), 056202 (2011)

    Article  ADS  Google Scholar 

  41. J. Atalaya, A. Isacsson, M.I. Dykman, Diffusion-induced dephasing in nanomechanical resonators. Phys. Rev. B 83(4), 045419 (2011)

    Article  ADS  Google Scholar 

  42. P. Rabl, Cooling of mechanical motion with a two-level system: the high-temperature regime. Phys. Rev. B 82(16), 165320 (2010)

    Article  ADS  Google Scholar 

  43. L. Chotorlishvili, Z. Toklikishvili, J. Berakdar, Thermal entanglement and efficiency of the quantum otto cycle for the su (1, 1) tavis-cummings system. J. Phys. A Math. Theor. 44(16), 165303 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. S.V. Prants, A group-theoretical approach to study atomic motion in a laser field. J. Phys. A 44(26), 265101 (2011)

    Article  ADS  MATH  Google Scholar 

  45. M. Ludwig, K. Hammerer, F. Marquardt, Entanglement of mechanical oscillators coupled to a nonequilibrium environment. Phys. Rev. A 82(1), 012333 (2010)

    Article  ADS  Google Scholar 

  46. T.L. Schmidt, K. Børkje, C. Bruder, B. Trauzettel, Detection of qubit-oscillator entanglement in nanoelectromechanical systems. Phys. Rev. Lett. 104(17), 177205 (2010)

    Article  ADS  Google Scholar 

  47. R.B. Karabalin, M.C. Cross, M.L. Roukes, Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B 79(16), 165309 (2009)

    Article  ADS  Google Scholar 

  48. L. Chotorlishvili, A. Ugulava, G. Mchedlishvili, A. Komnik, S. Wimberger, J. Berakdar, Nonlinear dynamics of two coupled nano-electromechanical resonators. J. Phys. B At. Mol. Opt. Phys. 44(21), 215402 (2011)

    Article  ADS  Google Scholar 

  49. S.N. Shevchenko, A.N. Omelyanchouk, E. Il’ichev, Multiphoton transitions in Josephson-junction qubits. Low Temp. Phys. 38(4), 283–300 (2012)

    Article  ADS  Google Scholar 

  50. Y.X. Liu, A. Miranowicz, Y. Gao, J. Bajer, C.P. Sun, F. Nori, Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators. Phys. Rev. A 82(3), 032101 (2010)

    Article  ADS  Google Scholar 

  51. S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stückelberg interferometry. Phys. Rep. 492(1), 1–30 (2010)

    Article  ADS  Google Scholar 

  52. D. Zueco, G.M. Reuther, S. Kohler, P. Hänggi, Qubit-oscillator dynamics in the dispersive regime: analytical theory beyond the rotating-wave approximation. Phys. Rev. A 80(3), 033846 (2009)

    Article  ADS  Google Scholar 

  53. G.Z. Cohen, M. Di Ventra, Reading, writing, and squeezing the entangled states of two nanomechanical resonators coupled to a SQUID. Phys. Rev. B 87(1), 014513 (2013)

    Article  ADS  Google Scholar 

  54. P. Rabl, P. Cappellaro, M.V. Gurudev Dutt, L. Jiang, J.R. Maze, M.D. Lukin, Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79(4), 041302(R) (2009)

    Article  ADS  Google Scholar 

  55. L.G. Zhou, L.F. Wei, M. Gao, X.B. Wang, Strong coupling between two distant electronic spins via a nanomechanical resonator. Phys. Rev. A 81(4), 042323 (2010)

    Article  ADS  Google Scholar 

  56. L. Chotorlishvili, D. Sander, A. Sukhov, V. Dugaev, V.R. Vieira, A. Komnik, J. Berakdar, Entanglement between nitrogen vacancy spins in diamond controlled by a nanomechanical resonator. Phys. Rev. B 88(8), 085201 (2013)

    Article  ADS  Google Scholar 

  57. R.B. Karabalin, M.C. Cross, M.L. Roukes, Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B 79, 165309 (2009)

    Article  ADS  Google Scholar 

  58. A.K. Singh, L. Chotorlishvili, S. Srivastava, I. Tralle, Z. Toklikishvili, J. Berakdar, S.K. Mishra, Generation of coherence in an exactly solvable nonlinear nanomechanical system. Phys. Rev. B 101, 104311 (2020)

    Article  ADS  Google Scholar 

  59. D. Maroulakos, L. Chotorlishvili, D. Schulz, J. Berakdar, Local and non-local invasive measurements on two quantum spins coupled via nanomechanical oscillations. Symmetry 12(7), 1078 (2020)

    Article  Google Scholar 

  60. H.Y. Chen, E.R. MacQuarrie, G.D. Fuchs, Orbital state manipulation of a diamond nitrogen-vacancy center using a mechanical resonator. Phys. Rev. Lett. 120, 167401 (2018)

    Article  ADS  Google Scholar 

  61. G.K. Naik, R. Singh, S.K. Mishra, Controlled generation of genuine multipartite entanglement in floquet ising spin models. Phys. Rev. A 99, 032321 (2019)

    Article  ADS  Google Scholar 

  62. T.-C. Wei, P.M. Goldbart, Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)

    Article  ADS  Google Scholar 

  63. M. Blasone, F. Dell’Anno, S. De Siena, F. Illuminati, Hierarchies of geometric entanglement. Phys. Rev. A 77, 062304 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. C. Kittel, C.-Y. Fong, Quantum Theory of Solids (Wiley, New York, 1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AKS, LC, and SKM conceived the presented idea, developed the theory, and performed the analysis. AKS, KS, and VV performed the numerical calculations. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Sunil K. Mishra.

Appendix: Calculation of thermally averaged OTOC \(C_\rho \)

Appendix: Calculation of thermally averaged OTOC \(C_\rho \)

From Eq. (16) after re-scaling, the total Hamiltonian will be written as

$$\begin{aligned} H_{tot}= & {} (\omega _{0R}+\varOmega _0)(\sigma _{1}^z+ \sigma _{2}^z)\nonumber \\&+\varOmega _n(\sigma _{1}^+ \sigma _{2}^- + \sigma _{1}^- \sigma _{2}^+) \end{aligned}$$
(24)

or in the matrix form, in the standard basis,

$$\begin{aligned} \begin{pmatrix} 2(\varOmega _0+\omega _{0R}) &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad \varOmega _{n} &{}\quad 0\\ 0 &{}\quad \varOmega _{n}&{}\quad 0&{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -2(\varOmega _0+\omega _{0R}) \end{pmatrix},\quad \end{aligned}$$
(25)

where \(n=\langle a^{\dagger }a\rangle \), \(\omega _{0R}=\frac{\omega _{0}}{2n+1}\), and \(\varOmega _0=\frac{g^2 }{\omega _{0}-\omega }\), and \(\varOmega _{n}=\frac{g^2 }{(\omega _{0}-\omega )(2n+1)}\). The eigenstates of the above Hamiltonian are

$$\begin{aligned} \vert \phi _{1}\rangle= & {} \vert 0,0\rangle , \end{aligned}$$
(26)
$$\begin{aligned} \vert \phi _{2}\rangle= & {} \frac{1}{\sqrt{2}}(\vert 1,0\rangle +\vert 0,1\rangle ), \end{aligned}$$
(27)
$$\begin{aligned} \vert \phi _{3}\rangle= & {} \frac{1}{\sqrt{2}}(\vert 1,0\rangle -\vert 0,1\rangle ), \end{aligned}$$
(28)
$$\begin{aligned} \vert \phi _{4}\rangle= & {} \vert 1,1\rangle , \end{aligned}$$
(29)

with corresponding eigenvalues:

$$\begin{aligned} E_{1}= & {} 2(\varOmega _0+\omega _{0R}) \end{aligned}$$
(30)
$$\begin{aligned} E_{2}= & {} \varOmega _{n} \end{aligned}$$
(31)
$$\begin{aligned} E_{3}= & {} -\varOmega _{n} \end{aligned}$$
(32)
$$\begin{aligned} E_{4}= & {} -2(\varOmega _0+\omega _{0R}). \end{aligned}$$
(33)

At a finite temperature, in the equilibrium state the density matrix \(\hat{\varrho }=Z^{-1}e^{-\beta H_{tot}}\) of the system in the diagonal basis of the Hamiltonian is

$$\begin{aligned} \hat{\varrho }= & {} Z^{-1}\big (e^{-\beta E_{1}}\vert \phi _{1}\rangle \langle \phi _{1}\vert \nonumber \\&+e^{-\beta E_{2}}\vert \phi _{2}\rangle \langle \phi _{2}\vert +e^{-\beta E_{3}}\vert \phi _{3}\rangle \langle \phi _{3}\vert \nonumber \\&+ e^{-\beta E_{4}}\vert \phi _{4}\rangle \langle \phi _{4}\vert \big ) \end{aligned}$$
(34)
$$\begin{aligned}&\hat{\varrho }=Z^{-1}\begin{pmatrix} e^{-2\beta (\varOmega _0+\omega _{0R})}&{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad e^{- \beta \varOmega _{n}} &{}\quad 0&{}\quad 0\\ 0 &{}\quad 0&{}\quad e^{ \beta \varOmega _{n}}&{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad e^{2\beta (\varOmega _0+\omega _{0R})} \end{pmatrix},\nonumber \\&Z=2\cosh {\beta 2(\varOmega _0+\omega _{0R})}+2\cosh {\beta \varOmega _{n}}. \end{aligned}$$
(35)

Pauli operators \(\sigma _{1}^{z}\) and \(\sigma _{2}^{z}\) in the diagonal basis of Hamiltonian are written as

$$\begin{aligned} \sigma _{1}^{z}= & {} \vert \phi _{1}\rangle \langle \phi _{1}\vert +\vert \phi _{3}\rangle \langle \phi _{2}\vert +\vert \phi _{2}\rangle \langle \phi _{3}\vert -\vert \phi _{4}\rangle \langle \phi _{4}\vert \end{aligned}$$
(36)
$$\begin{aligned} \sigma _{2}^{z}= & {} \vert \phi _{1}\rangle \langle \phi _{1}\vert -\vert \phi _{3}\rangle \langle \phi _{2}\vert -\vert \phi _{2}\rangle \langle \phi _{3}\vert -\vert \phi _{4}\rangle \langle \phi _{4}\vert \end{aligned}$$
(37)

Also, the time evolution operators \(\exp {(-i H_{tot} t)}\) in the diagonal basis can be given as

$$\begin{aligned} \exp {(-i H_{tot} t)}= & {} e^{- i E_{1}t}\vert \phi _{1}\rangle \langle \phi _{1}\vert +e^{- i E_{2}t}\vert \phi _{2}\rangle \langle \phi _{2}\vert \nonumber \\&+ e^{- i E_{3}t}\vert \phi _{3}\rangle \langle \phi _{3}\vert +e^{= i E_{4}t}\vert \phi _{4}\rangle \langle \phi _{4}\vert , \end{aligned}$$
(38)

We calculate \(\sigma _{1}^{z}(t)\) as

$$\begin{aligned} \sigma _{1}^{z}(t)= & {} e^{iH_{tot}t}\sigma _{1}^{z}e^{-iH_{tot}t}=\vert \phi _{1}\rangle \langle \phi _{1}\vert +e^{-2i\varOmega _{n}t}\vert \phi _{3}\rangle \langle \phi _{2}\vert \nonumber \\&+ e^{2i\varOmega _{n}t}\vert \phi _{2}\rangle \langle \phi _{3}\vert -\vert \phi _{4}\rangle \langle \phi _{4}\vert . \end{aligned}$$
(39)

By successive application of operators in the sequence \(\sigma _{1}^{z}(t)\sigma _{2}^{z}\sigma _{1}^{z}(t)\sigma _{2}^{z}\), we get

$$\begin{aligned} \sigma _{1}^{z}(t)\sigma _{2}^{z}\sigma _{1}^{z}(t)\sigma _{2}^{z}= & {} \big (\vert \phi _{1}\rangle \langle \phi _{1}\vert -e^{4i\varOmega _{n}t}\vert \phi _{2}\rangle \langle \phi _{2}\vert \nonumber \\&- e^{-4i\varOmega _{n}t}\vert \phi _{3}\rangle \langle \phi _{3}\vert +\vert \phi _{4}\rangle \langle \phi _{4}\vert \big ). \end{aligned}$$
(40)

We can calculate \(\rho \sigma _{1}^{z}(t)\sigma _{2}^{z}\sigma _{1}^{z}(t)\sigma _{2}^z \) as

$$\begin{aligned} \rho \sigma _{1}^{z}(t)\sigma _{2}^{z}\sigma _{1}^{z}(t)\sigma _{2}^{z}= & {} Z^{-1}\big (e^{-2\beta (\varOmega _0+\omega _{0R})}\vert \phi _{1}\rangle \langle \phi _{1}\vert \nonumber \\&-e^{-\beta \varOmega _n}e^{4i\varOmega _{n}t}\vert \phi _{2}\rangle \langle \phi _{2}\vert \nonumber \\&- e^{\beta \varOmega _n}e^{-4i\varOmega _{n}t}\vert \phi _{3}\rangle \langle \phi _{3}\vert \nonumber \\&+ e^{2\beta (\varOmega _0+\omega _{0R})}\vert \phi _{4}\rangle \langle \phi _{4}\vert \big ). \end{aligned}$$
(41)

Further, we calculate the thermally averaged OTOC \(C_\rho (t)=1-Re(Tr \{\rho \sigma _{1}^{z}(t)\sigma _{2}^{z}\sigma _{1}^{z}(t)\sigma _{2}^z\})\) as

$$\begin{aligned}&C_\rho (t)=1\nonumber \\&\quad -\frac{2\cosh 2\beta (\varOmega _0+\omega _{0R})+2\cos 4\varOmega _n t\cosh {\beta \varOmega _n}}{Z},\nonumber \\ \end{aligned}$$
(42)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Sachan, K., Chotorlishvili, L. et al. Scrambling and quantum feedback in a nanomechanical system. Eur. Phys. J. D 76, 17 (2022). https://doi.org/10.1140/epjd/s10053-022-00352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00352-3

Navigation