Skip to main content

Advertisement

Log in

Coherent control of quantum and entanglement dynamics via periodic modulations in optomechanical semiconductor resonator coupled to quantum-dot excitons

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We systematically study the influence of simultaneously modulating the input laser intensity and quantum-dot (QD) resonance frequency on the mean-field dynamics, fluctuation energy transfer and entanglement in a optomechanical semiconductor resonator embedded with a QD. We show that the modulation and the hybrid system can be engineered to attain the desired mean-field values and control the fluctuation energy transfer and the entanglement among the various degrees of freedom. A remarkably high degree of entanglement can be generated by modulating only the QD frequency. The interplay between the two modulations leads to a decrease in the entanglement. Switching on the modulation leads to a transition from low stationary to large dynamical entanglement. This investigation provides novel strategies to coherently control data signal transfer and storage in quantum information processing networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the article.

References

  1. Marquardt, F., Girvin, S.M.: Optomechanics. Physics 2, 40 (2009)

    Google Scholar 

  2. Aspelmeyer, M., Groblacher, S., Hammerer, K., Kiesel, N.: Quantum optomechanics-throwing a glance. J. Opt. Soc. Am. B 27, A189 (2010)

    ADS  Google Scholar 

  3. Kippenberg, T.J., Vahala, K.J.: Cavity Opto-Mechanics. Opt. Express 15, 17172 (2007)

    ADS  Google Scholar 

  4. Milburn, G.J., Woolley, M.J.: An introduction to Quantum optomechanics. Acta. Phys. Slov. 61, 5 (2012)

    Google Scholar 

  5. Bowen, W.P., Milburn, G.J.: Quantum Optomechanics. CRC Press (2015)

  6. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity Optomechanics: Nano- and Micromechanical Resonators Interacting with Light. Springer (2014)

  7. Genes, C., Vitali, D., Tombesi, P., Gigan, S., Aspelmeyer, M.: Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)

    ADS  Google Scholar 

  8. Groblacher, S., Hertzberg, J.B., Vanner, M.R., Cole, G.D., Gigan, S., Schwab, K.C., Aspelmeyer, M.: Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat. Phys. 5, 485 (2009)

    Google Scholar 

  9. Vitali, D., Gigan, S., Ferreira, A., Bohm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    ADS  Google Scholar 

  10. Verhagen, E., Deleglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature (London) 482, 63 (2012)

  11. Chan, J., Alegre, T.P.M., Naeini, A.H.S., Hill, J.T., Krause, A., Groeblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature (London) 478, 89 (2011)

  12. Mari, A., Eisert, J.: Gently modulating optomechanical systems. Phys. Rev. Lett. 103, 213603 (2009)

    ADS  Google Scholar 

  13. Mari, A., Eisert, J.: Opto- and electro-mechanical entanglement improved by modulation. arXiv:1111.2415v1 (2011)

  14. Galve, F., Pachon, L.A., Zueco, D.: Bringing entanglement to the high temperature limit. Phys. Rev. Lett. 105, 180501 (2010)

    ADS  Google Scholar 

  15. Woolley, M.J., Doherty, A.C., Milburn, G.J., Schwab, K.C.: Nanomechanical squeezing with detection via a microwave cavity. Phys. Rev. A 78, 062303 (2008)

    ADS  Google Scholar 

  16. Palomaki, T.A., Harlow, J.W., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature (London) 495, 210 (2013)

  17. Safavi-Naeini, A.H., Painter, O.: Proposal for an optomechanical traveling wave phonon-photon translator. New J. Phys. 13, 013017 (2011)

    ADS  Google Scholar 

  18. Hammerer, K., Wallquist, M., Genes, C., Ludwig, M., Marquardt, F., Treutlein, P., Zoller, P., Ye, J., Kimble, H.J.: Strong coupling of a mechanical oscillator and a single atom. Phys. Rev. Lett. 103, 063005 (2009)

    ADS  Google Scholar 

  19. Wallquist, M., Hammerer, K., Zoller, P., Genes, C., Ludwig, M., Marquardt, F., Treutlein, P., Ye, J., Kimble, H.J.: Single-atom cavity QED and optomicromechanics. Phys. Rev. A 81, 023816 (2010)

    ADS  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

  21. Pinard, M., Dantan, A., Vitali, D., Arcizet, O., Briant, T., Heidmann, A.: Entangling movable mirrors in a double-cavity system. Europhys. Lett. 72, 747 (2005)

    ADS  Google Scholar 

  22. Paternostro, M., Vitali, D., Gigan, S., Kim, M.S., Brukner, C., Eisert, J., Aspelmeyer, M.: Creating and probing multipartite macroscopic entanglement with light. Phys. Rev. Lett. 99, 250401 (2007)

    ADS  Google Scholar 

  23. Bhattacharya, M., Meystre, P.: Trapping and cooling a mirror to its quantum mechanical ground state. Phys. Rev. Lett. 99, 073601 (2007)

    ADS  Google Scholar 

  24. Bhattacharya, M., Uys, H., Meystre, P.: Optomechanical trapping and cooling of partially reflective mirrors. Phys. Rev. A 77, 033819 (2008)

    ADS  Google Scholar 

  25. Wipf, C., Corbitt, T., Chen, Y., Mavalvala, N.: Route to ponderomotive entanglement of light via optically trapped mirrors. New J. Phys. 10, 095017 (2008)

    ADS  Google Scholar 

  26. Vitali, D., Gigan, S., Ferreira, A., Bhm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    ADS  Google Scholar 

  27. Vitali, D., Mancini, S., Tombesi, P.: Stationary entanglement between two movable mirrors in a classically driven Fabry-Perot cavity. J. Phys. A: Math. Theor. 40, 8055 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Mancini, S., Vitali, D., Tombesi, P.: Scheme for teleportation of quantum states onto a mechanical resonator. Phys. Rev. Lett. 90, 137901 (2003)

    ADS  Google Scholar 

  29. Pirandola, S., Mancini, S., Vitali, D., Tombesi, P.: Light reflection upon a movable mirror as a paradigm for continuous variable teleportation network. J. Mod. Opt. 51, 901 (2004)

    ADS  MATH  Google Scholar 

  30. Pirandola, S., Mancini, S., Vitali, D., Tombesi, P.: Continuous-variable entanglement and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure. Phys. Rev. A 68, 062317 (2003)

    ADS  Google Scholar 

  31. Pirandola, S., Vitali, D., Tombesi, P., Lloyd, S.: Macroscopic entanglement by entanglement swapping. Phys. Rev. Lett. 97, 150403 (2006)

    ADS  Google Scholar 

  32. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  33. Meystre, P.: A short walk through quantum optomechanics. Ann. Phys. (Berlin) 525, 215 (2013)

  34. Chakraborty, S., Sarma, A.K.: Entanglement dynamics of two coupled mechanical oscillators in modulated optomechanics. Phys. Rev. A 97, 022336 (2018)

    ADS  Google Scholar 

  35. Ma, Y.-H., Zhou, L.: Enhanced entanglement between a movable mirror and a cavity field assisted by two-level atoms. Jour. Appl. Phys. 111, 103109 (2012)

    ADS  Google Scholar 

  36. Abdi, M., Barzanjeh, Sh., Tombesi, P., Vitali, D.: Effect of phase noise on the generation of stationary entanglement in cavity optomechanics. Phys. Rev. A 84, 032325 (2011)

    ADS  Google Scholar 

  37. Kuzyk, M.C., Van Enk, S.J., Wang, H.: Generating robust optical entanglement in weak-coupling optomechanical systems. Phys. Rev. A 88, 062341 (2013)

    ADS  Google Scholar 

  38. Hofer, S.G., Wieczorek, W., Aspelmeyer, M., Hammerer, K.: Quantum entanglement and teleportation in pulsed cavity optomechanics. Phys. Rev. A 84, 052327 (2011)

    ADS  Google Scholar 

  39. Wang, G., Huang, L., Lai, Y.-C., Grebogi, C.: Nonlinear dynamics and quantum entanglement in optomechanical systems. Phys. Rev. Lett. 112, 110406 (2014)

    ADS  Google Scholar 

  40. Rakhubovsky, A.A., Flipp, R.: Robust entanglement with a thermal mechanical oscillator. Phys. Rev. A 91, 062317 (2015)

    ADS  Google Scholar 

  41. Rogers, B., Paternostro, M., Palma, G.M., De Chiara, G.: Entanglement control in hybrid optomechanical systems. Phys. Rev. A 86, 042323 (2012)

    ADS  Google Scholar 

  42. Yuan, X.-Z.: Entangling an optical cavity and a nanomechanical resonator beam by means of a quantum dot. Phys. Rev. A 88, 052317 (2013)

    ADS  Google Scholar 

  43. Blattmann, R., Krenner, H.J., Kohler, S., Hanggi, P.: Entanglement creation in a quantum-dot-nanocavity system by Fourier-synthesized acoustic pulses. Phys. Rev. A 89, 012327 (2014)

    ADS  Google Scholar 

  44. Li, M.-C., Chen, A.-X.: Enhanced entanglement in hybrid cavity mediated by a two-way coupled quantum dot. Open Phys. 18, 14–23 (2020)

    ADS  Google Scholar 

  45. Mabuchi, H., Doherty, A.C.: Cavity quantum electrodynamics: coherence in context. Science 298, 1312 (2002)

    Google Scholar 

  46. Srinivasan, K., Painter, O.: Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature (London) 450, 862 (2007)

  47. Kimble, H.J.: The quantum internet. Nature (London) 453, 1023 (2008)

    ADS  Google Scholar 

  48. Vahala, K.J.: Optical microcavities. Nature (London) 424, 839 (2003)

    ADS  Google Scholar 

  49. Vahala, K.J.: Optical Micro Cavities. World Scientific Publishing (2004)

  50. Khitrova, G., Gibbs, H.M., Kira, M., Koch, S.W., Schere, A.: Vacuum Rabi splitting in semiconductors. Nat. Phys. 2, 81 (2006)

    Google Scholar 

  51. Tang, J., Geng, W., Xu, X.: Quantum interference induced photon blockade in a coupled single quantum dot-cavity system. Sci. Rep. 5, 9252 (2015). https://doi.org/10.1038/srep09252

    Article  ADS  Google Scholar 

  52. Ali, S., Bhattacherjee, A.B.: Photon statistics of radiation emitted by two quantum wells embedded in two optically coupled semiconductor microcavities. Optik 172, 588 (2018)

    ADS  Google Scholar 

  53. Bhattacherjee, A.B., Hasan, M.S.: Controllable optical bistability and Fano line shape in a hybrid optomechanical system assisted by kerr medium: possibility of all optical switching. J. Mod. Opt. 65, 1688 (2018)

    ADS  MathSciNet  Google Scholar 

  54. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    ADS  Google Scholar 

  56. Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: A vision for the road ahead Science 362, eaam9288 (2018) https://doi.org/10.1126/science.aam9288

  57. Hu, Y.-W., Xiao, Y.-F., Liu, Y.-C., Gong, Q.: Optomechanical sensing with on-chip microcavities. Front. Phys. 8(5), 475–490 (2013)

    ADS  Google Scholar 

  58. Thon, S.M., Rakher, M.T., Kim, H., Gudat, J., Irvine, W.T.M., Petroff, P.M., Bouwmeester, D.: Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity. Appl. Phys. Lett. 94, 111–115 (2009)

    Google Scholar 

  59. Mahajan, S., Bhattacherjee, A.B.: Controllable nonlinear effects in a hybrid optomechanical semiconductor microcavity containing a quantum dot and Kerr medium. J. Mod. Opt. 66(6), 652–664 (2019)

    ADS  Google Scholar 

  60. Wu, S. C., Zhang, L., Lu, J., Qin, L.-G., Wang, Z. -Y.: Surface acoustic waves controlled optomechanically induced transparency in a hybrid piezo-optomechanical planar distributed Bragg reflectors cavity system. arXiv:1909.12870v1 (2019)

  61. Singh, M.K., Jha, P.K., Bhattacherjee, A.B.: Photon blockade induced tunable source of one/two photon in a double quantum dot-semiconductor microcavity system. Optik 185, 685–691 (2019)

    ADS  Google Scholar 

  62. Bhatt, V., Jha, P.K., Bhattacherjee, A.B.: Effect of second-order nonlinearity on quantum coherent oscillations in a quantum dot embedded in a doubly resonant semiconductor micro-cavity. Optik 198, (2019)

  63. Choy, H. K. H.: Design and fabrication of distributed Bragg reflectors for vertical-cavity surface-emitting lasers. M.Sc. Thesis, Mc Master University (1996)

  64. Kabuss, J., Carmele, A., Brandesf, T., Knorr, A.: Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme. Phys. Rev. Lett. 109, 054301 (2012)

    ADS  Google Scholar 

  65. Faraon, A., Majumdar, A., Kim, H., Petroff, P., Vuckovic, J.: Fast Electrical Control of a Quantum Dot Strongly Coupled to a Nano-resonator. arXiv:0906.0751v1 (2009)

  66. Majumdar, A., Faraon, A., Englund, D., Manquest, N., Kim, H., Petroff, P., Vuckovic, J.: Proc. SPIE 7611, Advances in Photonics of Quantum Computing, Memory, and Communication III, 76110L (2010) https://doi.org/10.1117/12.843372

  67. Lei, C.U., Weinstein, A.J., Suh, J., Wollman, E.E., Kronwald, A., Marquardt, F., Clerk, A.A., Schwab, K.C.: Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit. Phys. Rev. Lett. 117, 100801 (2016)

    ADS  Google Scholar 

  68. Giovannetti, V., Vitali, D.: Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Phys. Rev. A 63, 023812 (2001)

    ADS  Google Scholar 

  69. Liu, Y.C., Shen, Y.F., Gong, Q., Xiao, Y.F.: Optimal limits of cavity optomechanical cooling in the strong-coupling regime. Phys. Rev. A 89, 053821 (2014)

    ADS  Google Scholar 

  70. Xu, X.W., Li, Y.: Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems. Phys. Rev. A 91, 053854 (2015)

    ADS  Google Scholar 

  71. Chen, R.-X., Shen, L.-T., Yang, Z.-B., Wu, H.-Z., Zheng, S.-B.: Enhancement of entanglement in distant mechanical vibrations via modulation in a coupled optomechanical system. Phys. Rev. A. 89, 023843 (2014)

    ADS  Google Scholar 

  72. Joshi, C., Larson, J., Jonson, M., Andersson, E., Ohberg, P.: Entanglement of distant optomechanical systems. Phys. Rev. A 85, 033805 (2012)

    ADS  Google Scholar 

  73. Wu, Y., Piper, I.M., Ediger, M., Brereton, P., Schmidgall, E.R., Eastham, P.R., Hugues, M., Hopkinson, M., Phillips, R.T.: Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage. Phys. Rev. Lett. 106(6), 067401 (2011)

    ADS  Google Scholar 

  74. Malinovsky, V.S., Krause, J.L.: General theory of population transfer by adiabatic rapid passage with intense, chirped laser pulses. Eur. Phys. J. D 14, 147–155 (2001)

    ADS  Google Scholar 

  75. Farace, A., Giovannetti, V.: Enhancing quantum effects via periodic modulations in optomechanical systems. Phys. Rev. A 86, 013820 (2012)

    ADS  Google Scholar 

  76. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  77. Rabl, P., Kolkowitz, S.J., Koppens, F.H.L., Harris, J.G.E., Zoller, P., Lukin, M.D.: A quantum spin transducer based on nano electro-mechancial resonator arrays. Nat. Phys. 6, 602 (2010)

    Google Scholar 

  78. Braunstein, S.L., Lock, P.V.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  79. Mancini, S., Tombesi, P.: High-sensitivity force measurement using entangled probes. Europhys. Lett. 61, 8 (2003)

    ADS  Google Scholar 

  80. Xureb, A., Genes, C., Dantan, A.: Strong coupling and long-range collective interactions in optomechanical arrays. Phys. Rev. Lett. 109, 223601 (2012)

    ADS  Google Scholar 

  81. Ritter, S., Nolleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature 484(7393), 195–200 (2012)

    ADS  Google Scholar 

  82. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75(24), 4337–41 (1995)

    ADS  Google Scholar 

  83. Bowen, W.P., Treps, N., Schnabel, R., Lam, P.K.: Experimental demonstration of continuous variable polarization entanglement. Phys. Rev. Lett. 89(25), 253601 (2002)

    ADS  Google Scholar 

  84. Jost, J.D., Home, J.P., Amini, J.M., Hanneke, D., Ozeri, R., Langer, C., Bollinger, J.J., Leibfried, D., Wineland, D.J.: Entangled mechanical oscillators. Nature 459(7247), 683–5 (2009)

    ADS  Google Scholar 

  85. Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sqrensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466(7307), 730–4 (2010)

    ADS  Google Scholar 

  86. Sete, E.A., Eleuch, H., Ooi, C.H.: Raymond: entanglement between exciton and mechanical modes via dissipation-induced coupling. Phys. Rev. A 92, 033843 (2015)

    ADS  Google Scholar 

  87. Boura, H.A., Isar, A.: Logarithmic negativity of two bosonic modes in the two thermal reservoir model. Rom. J. Phys. 60, 1278 (2015)

    Google Scholar 

  88. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    ADS  Google Scholar 

  89. Adesso, G., Serani, A., Illuminati, F.: Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A 70, 022318 (2004)

    ADS  Google Scholar 

  90. Simon, R.: Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    ADS  Google Scholar 

  91. Zhang, X., Sheng, J., Wu, H.: Large scale quantum key distribution: challenges and solutions. Opt. Express 26, 6285 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

P.K. Jha, Aranya B. Bhattacherjee and Vijay Bhatt are thankful to the Department of Science and Technology DST (SERB), Project No. EMR/2017/001980, New Delhi, for the financial support. Aranya B. Bhattacherjee and Souri Banerjee are grateful to BITS Pilani, Hyderabad Campus, for the facilities to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aranya Bhuti Bhattacherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, V., Jha, P.K., Bhattacherjee, A.B. et al. Coherent control of quantum and entanglement dynamics via periodic modulations in optomechanical semiconductor resonator coupled to quantum-dot excitons. Quantum Inf Process 20, 107 (2021). https://doi.org/10.1007/s11128-021-03032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03032-0

Keywords

Navigation