Skip to main content
Log in

Measuring gravitational acceleration by cold atom multimode interference with three Kapitza–Dirac pulses

  • Regular Article – Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We theoretically investigate atom interferometric schemes based on three Kapitza–Dirac pulses in a one-dimensional harmonic trap. Kapitza–Dirac pulses as beam splitters create several spatially addressable modes with different momentum. The one-dimensional harmonic potential well acts as a mirror in an optical interferometer, which causes different modes to interfere and numerous high-contrast fringes appear in each mode at the time of measurement. The sensitivity of this atom interferometer in measuring gravitational acceleration can reach \(\varDelta g/g\approx 10^{-10}\), which is further improved with increasing the number of modes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical paper, all the formulas are presented in the main text.]

References

  1. G.W. Biedermann, H.J. McGuinness, A.V. Rakholia, Y.-Y. Jau, D.R. Wheeler, J.D. Sterk, G.R. Burns, Phys. Rev. Lett. 118, 163601 (2017)

    Article  ADS  Google Scholar 

  2. Y. Imanishi, T. Sato, T. Higashi, W. Sun, S. Okubo, Science 306, 476 (2004)

    Article  ADS  Google Scholar 

  3. A. Arias, G. Lochead, T.M. Wintermantel, S. Helmrich, S. Whitlock, Phys. Rev. Lett. 122, 053601 (2019)

    Article  ADS  Google Scholar 

  4. P.B. Wigley, K.S. Hardman, C. Freier, P.J. Everitt, S. Legge, P. Manju, J.D. Close, N.P. Robins, Phys. Rev. A 99, 023615 (2019)

    Article  ADS  Google Scholar 

  5. A. Peters, K.Y. Chung, S. Chu, Nature 400, 849 (1999)

    Article  ADS  Google Scholar 

  6. M. Kasevich, S. Chu, Appl. Phys. B 54, 321 (1992)

    Article  ADS  Google Scholar 

  7. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009)

    Article  ADS  Google Scholar 

  8. E.M. Rasel, M.K. Oberthaler, H. Batelaan, J. Schmiedmayer, A. Zeilinger, Phys. Rev. Lett. 75, 2633 (1995)

    Article  ADS  Google Scholar 

  9. G. Ferrari, N. Poli, F. Sorrentino, G.M. Tino, Phys. Rev. Lett. 97, 060402 (2006)

    Article  ADS  Google Scholar 

  10. P. Asenbaum, C. Overstreet, T. Kovachy, D.D. Brown, J.M. Hogan, M.A. Kasevich, Phys. Rev. Lett. 118, 183602 (2017)

    Article  ADS  Google Scholar 

  11. R. Trubko, J. Greenberg, M.T.S. Germaine, M.D. Gregoire, W.F. Holmgren, I. Hromada, A.D. Cronin, Phys. Rev. Lett. 114, 140404 (2015)

    Article  ADS  Google Scholar 

  12. R. Karcher, A. Imanaliev, S. Merlet, F. Pereira Dos Santos, New J. Phys. 20, 113041 (2018)

    Article  ADS  Google Scholar 

  13. A. Wicht, J. Hensley, E. Sarajlic, S. Chu, Phys. Scr. T102, 82 (2002)

    Article  ADS  Google Scholar 

  14. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G.M. Tino, Nature (London) 510, 518 (2014)

    Article  ADS  Google Scholar 

  15. A. Peters, K.Y. Chung, S. Chu, Metrologia 38, 25 (2001)

    Article  ADS  Google Scholar 

  16. T. Farah, C. Guerlin, A. Landragin, P. Bouyer, S. Gaffet, F. Pereira Dos Santos, S. Merlet, Gyrosc. Navig. 5, 266 (2014)

    Article  Google Scholar 

  17. J.F. Clauser, Physica B and C 151, 262 (1988)

    Article  ADS  Google Scholar 

  18. W. Li, T. He, A. Smerzi, Phys. Rev. Lett. 116, 149901 (2016)

    Article  ADS  Google Scholar 

  19. T. He, E. Wang, Indian J. Phys. 92, 1223 (2018)

    Article  ADS  Google Scholar 

  20. T. He, P. Niu, Phys. Lett. A 381, 1087 (2017)

    Article  ADS  Google Scholar 

  21. C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. D ürr, G. Rempe, Appl. Phys. B 69, (1999) 303

  22. M. Robert-de-Saint-Vincent, J.-P. Brantut, Ch. J. Bord É, A. Aspect, T. Bourdel, P. Bouyer, EPL, 89, (2010) 10002

  23. L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, Mark Edwards, Charles W. Clark, K. Helmerson, S. L. Rolston, W. D. Phillips, Phys. Rev. Lett. 83, 5407 (1999)

  24. M. Abramovitz, A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (Dover, New York, 1964)

    MATH  Google Scholar 

  25. B.R. Holstein, Topics in Advanced Quantum Mechanics (Addison-Wesley, London, 1992)

    Google Scholar 

  26. J. Chwedenczuk, F. Piazza, A. Smerzi, Phys. Rev. A 87, 033607 (2013)

    Article  ADS  Google Scholar 

  27. L. Pezzè, A. Smerzi, M.K. Oberthaler, R. Schmied, P. Treutlein, Rev. Mod. Phys. 90, 035005 (2018)

    Article  ADS  Google Scholar 

  28. S. Donadello, S. Serafini, T. Bienaimé, F. Dalfovo, G. Lamporesi, G. Ferrari, Phys. Rev. A 94, 023628 (2016)

    Article  ADS  Google Scholar 

  29. R.E. Sapiro, R. Zhang, G. Raithel, Phys. Rev. A 79, 043630 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2021L408, Grant No. 2021L405).

Author information

Authors and Affiliations

Authors

Contributions

T-CH: Conceptualization, Formal analysis, Investigation, Methodology, Resources, Software, Validation, Visualization, Writing - original draft. Y-QM: Supervision, Validation, Writing - original draft, Writing - review. JL: Investigation, Project administration, Data curation.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, TC., Ma, YQ. & Li, J. Measuring gravitational acceleration by cold atom multimode interference with three Kapitza–Dirac pulses. Eur. Phys. J. D 76, 3 (2022). https://doi.org/10.1140/epjd/s10053-021-00335-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00335-w

Navigation