Skip to main content
Log in

Maximizing gravitational acceleration measurement accuracy by tuning the interaction time between atoms and gravity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We propose a technique using an atom interferometer to obtain the most accurate measurement of gravitational acceleration by changing the interaction time between the atoms and gravity in a harmonic trap. The analytical calculation procedure is based on the Feynman path integral method. The first Kapitza–Dirac (KD) scattering pulse splits the initial state into several modes with different momenta. Before adding the second KD pulse, the interaction time between the atoms and gravity is changed. These modes have a position shift as a result of the gravitational field and are coherently recombined by the harmonic potential. The second KD pulse splits the evolved modes a second time and separates them along different paths again. At the measurement time, we obtain the greatest accuracy from the quantum Fisher information. For the variation of gravitational acceleration on the surface of earth, an accuracy of \(10^{-9}\) can be achieved at any value of gravity acceleration by tuning the interaction time between the atoms and gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P Asenbaum, C Overstreet, T Kovachy, D D Brown, J M Hogan and M A Kasevich, Phys. Rev. Lett. 118 183602 (2017)

    Article  ADS  Google Scholar 

  2. G W Biedermann et al. Phys. Rev. Lett. 118 163601 (2017)

    Article  ADS  Google Scholar 

  3. S Abend et al. Phys. Rev. Lett. 117 203003 (2016)

    Article  ADS  Google Scholar 

  4. R Trubko et al. Phys. Rev. Lett. 114 140404 (2015)

    Article  ADS  Google Scholar 

  5. A D Cronin, J Schmiedmayer and D E Pritchard Rev. Rev. Mod. Phys. 81 1051 (2009)

    Article  ADS  Google Scholar 

  6. D W Keith, C R Ekstrom, Q A Turchette and D E Pritchard Phys. Phys. Rev. Lett. 66 2693 (1991)

    Article  ADS  Google Scholar 

  7. E M Rasel, M K Oberthaler, H Batelaan, J Schmiedmayer and A Zeilinger Phys. Phys. Rev. Lett. 75 2633 (1995)

    Article  ADS  Google Scholar 

  8. D M Giltner, R W McGowan and S A Lee Phys. Phys. Rev. Lett. 75 2638 (1995)

    Article  ADS  Google Scholar 

  9. H Vahed and Sh Aghazadeh Indian J. Phys. 91(5) 569 (2017)

    Article  ADS  Google Scholar 

  10. T Farah et al. Gyroscopy Navigation 5 266 (2014)

    Article  Google Scholar 

  11. A Wicht, J Hensley, E Sarajlic and S Chu Phys. Phys. Scr. T102 82 (2002)

    Article  ADS  Google Scholar 

  12. G Rosi, F Sorrentino, L Cacciapuoti, M Prevedelli and G M Tino Nature 510 518 (2014)

    Article  ADS  Google Scholar 

  13. M A Kasevich and S Chu Phys. Rev. Lett. 67 181 (1991)

    Article  ADS  Google Scholar 

  14. J M McGuirk, G T Foster, J B Fixler, M J Snadden and M A Kasevich Phys. Rev. A 65 033608 (2002)

    Article  ADS  Google Scholar 

  15. J B Fixler, G T Foster, J M McGuirk and M A Kasevich Science 315 74 (2007)

    Article  ADS  Google Scholar 

  16. R A Fisher Proc. Cambridge Philos. Soc. 22 700 (1925)

    Article  ADS  Google Scholar 

  17. A Holevo Probabilistic and Statistical Aspects of Quantum Theory (Italy: Edizioni della Normale) (1982)

    MATH  Google Scholar 

  18. Y Watanabe, T Sagawa and M Ueda Phys. Rev. A 84 042121 (2011)

    Article  ADS  Google Scholar 

  19. A Peters, K Y Chung and S Chu Nature 400 849 (1999)

    Article  ADS  Google Scholar 

  20. N Li and S Luo Phys. Rev. A 88 014301 (2013)

    Article  ADS  Google Scholar 

  21. C Keller, J Schmiedmayer, A Zeilinger, T Nonn, S Dürr and G Rempe Appl. Phys. B 69 303 (1999)

    Article  ADS  Google Scholar 

  22. L Melville Milne-Thomson Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (New York: Dover Publications) (1964)

  23. B R Holstein Topics in advanced quantum mechanics (New York: Perseus Books) (1994)

    Google Scholar 

  24. C Hirt, S Claessens, T Fecher, M Kuhn, R Pail and M Rexer Geophysical Research Letters. 40 4279 (2013)

    Article  ADS  Google Scholar 

  25. R E Sapiro, R Zhang and G Raithel Phys. Rev. A 79 043630 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11647041)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianchen He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Wang, EQ. Maximizing gravitational acceleration measurement accuracy by tuning the interaction time between atoms and gravity. Indian J Phys 92, 1223–1228 (2018). https://doi.org/10.1007/s12648-018-1222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1222-4

Keywords

PACS Nos.

Navigation