Skip to main content
Log in

Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer

  • Atom Interferometry
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Velocity sensitive stimulated Raman transitions have been used to measure the gravitational acceleration, g, of laser cooled sodium atoms in an atomic fountain geometry. By using an improved scheme to drive the Raman transitions, we have demonstrated a resolution of 3×10−8 g after 2×103 seconds of integration time. In addition to presenting recent experimental results, we review the theory of stimulated Raman transitions as it applies to atom interferometers and discuss the prospects of an atom interferometer-based gravimeter with better than 10−10 g absolute accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Carnal, J. Mlynek: Phys. Rev. Lett. 66, 2689 (1991)

    Google Scholar 

  2. D.W. Keith, C.R. Ekstrom, Q.A. Turchette, D.E. Pritchard: Phys. Rev. Lett. 66, 2693 (1991)

    Google Scholar 

  3. C.J. Bordé: Phys. Lett. A 140, 10 (1989)

    Google Scholar 

  4. V.P. Chebotayev, B. Dubetsky, A.P. Kasantsev, V.P. Yakovlev: J. Opt. Soc. Am. B2, 1791 (1985)

    Google Scholar 

  5. F. Riehle, T. Kisters, A. White, J. Helmecke, C.J. Bordé: Phys. Rev. Lett. 67, 181 (1991)

    Google Scholar 

  6. M. Kasevich, S. Chu: Phys. Rev. Lett. 67, 181 (1991)

    Google Scholar 

  7. R. Colella, A.W. Overhauser, S.A. Werner: Phys. Rev. Lett. 34, 1472 (1975)

    Google Scholar 

  8. J.F. Clauser: Physica B151, 262 (1988)

    Google Scholar 

  9. M. Zumberge: Private communication

  10. R. Hagen: Phys. Rev. Lett. 64, 2374 (1990)

    Google Scholar 

  11. M. Hillery, M. Scully: In Quantum Optics, Experimental Gravitation, and Measurement Theory, ed. by P. Meystre, M. Scully (Plenum, New York 1983) pp. 65–85

    Google Scholar 

  12. M.V. Berry: Proc. Roy. Soc. London, Ser. A 392, 45 (1984) Y. Aharonov, J. Anandan: Phys. Rev. Lett. 58, 1593 (1987)

    Google Scholar 

  13. See, for example: L. Allen, J.H. Eberly: Optical Resonance and Two-Level Atoms (Wiley, New York 1975)

    Google Scholar 

  14. M. Kasevich, E. Riis, S. Chu, R.G. DeVoe: Phys. Rev. Lett. 63, 612 (1989)

    Google Scholar 

  15. M. Kasevich, D.S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu: Phys. Rev. Lett. 66, 2297 (1991)

    Google Scholar 

  16. See, for example: S. Stenholm: Foundation of Laser Spectroscopy (Wiley, New York 1983)

    Google Scholar 

  17. K. Gibble: Private communication

  18. For a more detailed presentation, see: K. Moler, S.S. Weiss, M. Kasevich, S. Chu: To be published in Phys. Rev. A

  19. M. Marte, J.I. Cirac, P. Zoller: To be published in J. Modern Optics

  20. N. Ramsey: Molecular Beams (Oxford Univ. Press, Oxford 1956) S. Chu, M. Kasevich: To be published in Laser Spectroscopy X, ed. by M. Ducloy, E. Giacobino (Font Romeau, France, June 17–21, 1991)

    Google Scholar 

  21. R.P. Feynman, A.R. Hibbs: Quantum Mechanics and Path Integrals (McGraw-Hill, New York 1965)

    Google Scholar 

  22. A.W. Overhauser, R. Colella: Phys. Rev. Lett. 33, 1237 (1974)

    Google Scholar 

  23. E.L. Raab, M. Prentiss, A. Cable, S. Chu, D.E. Pritchard: Phys. Rev. Lett. 59, 2631 (1987)

    Google Scholar 

  24. J. Dalibard, C. Cohen-Tannoudji: J. Opt. Soc. Am. B 6, 2023 (1989)

    Google Scholar 

  25. P.J. Ungar, D.S. Weiss, E. Riis, S. Chu: J. Opt. Soc. Am. B 6, 2058 (1989)

    Google Scholar 

  26. D.S. Weiss, E. Riis, M. Kasevich, K. Moler, S. Chu: In Light Induced Kinetic Effects, ed. by L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, F. Strumia (ETS, Pisa 1991) pp. 35–44

    Google Scholar 

  27. W. Ertmer, R. Blatt, J.L. Hall, M. Zhu: Phys. Rev. Lett. 54, 996 (1985)

    Google Scholar 

  28. J.L. Hall, L. Hollberg, T. Baer, H.G. Robinson: Appl. Phys. Lett. 39, 680 (1981)

    Google Scholar 

  29. The natural resonance frequency of the seismometer is 1 Hz

  30. P. Nelson: Rev. Sci. Instrum. 62, 2069 (1991)

    Google Scholar 

  31. P. Saulson: Rev. Sci. Instrum. 55, 1315 (1984)

    Google Scholar 

  32. A. Clairon, C. Salomon, S. Guellati, W. D. Phillips: To be published in Europhys. Lett.

  33. C. Monroe, H. Robinson, C. Wieman: Opt. Lett. 16, 50 (1991)

    Google Scholar 

  34. J. Schmiedmayer: Nuc. Inst. and Meth. in Phys. Res. A284, 59 (1989)

    Google Scholar 

  35. J.E. Faller, I. Marson: Metrologia 25, 49 (1988)

    Google Scholar 

  36. K.E. Gibble: Ph.D. Thesis, University of Colorado (1990) (unpublished)

  37. C.E. Wieman, L. Hollberg: Rev. Sci. Instrum. 62, 1 (1991)

    Google Scholar 

  38. C. Monroe, W. Swann, H. Robinson, C. Wieman: Phys. Rev. Lett. 65, 1571 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasevich, M., Chu, S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl. Phys. B 54, 321–332 (1992). https://doi.org/10.1007/BF00325375

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325375

PACS

Navigation