Skip to main content
Log in

Differential cross sections for ionization of hydrogen-like atoms by proton and antiproton impact

  • Regular Article - Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Proton \((p)\)- and antiproton \((\overline{p})\)-induced ionization of H(1s), He+(1s), and Li2+(1s) targets is theoretically investigated by the closure second-Born approximation. Triple and double differential cross sections are investigated as functions of the energy of the ejected electron into the scattering plane with fixed emission angles at 70, 200, and 500 keV incident energies. The dependence of the energy and angular distributions of the ionized electron on both the sign of the projectile charge and the nucleus charge of the target is analyzed. It is found that the heights and positions of the peaks and dips turn out to be sensitive to the details of the collision dynamics. Comparisons between the present calculations due to proton-induced reactions and their corresponding available theoretical predictions show reasonable agreement.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

taken from Ref. [22]: results due to the classical trajectory Monto Carlo technique (dash dot curves), results due to the continuum distorted wave-eikonal initial state method (dash dot dot curves), and results due to the plane wave Born approximation (dash curves), as well as the results due to the method of two coulomb wave function around the two nuclei in the final state calculations (short dot curves) [26]

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: There is no data in the manuscript because we see that it is more convenient to represent the obtained results in figures].

References

  1. N. Stolterfoht, R.D. DuBois, R.D. Rivarola, Electron Emission in Heavy Ion-Atom Collisions (Springer, Berlin, 1997)

    Book  Google Scholar 

  2. R. K. Janev and J. J. Smith, Atomic and Plasma–Material Interaction Data for Fusion No. 4, (1993), IAEA, https://www.iaea.org/publications/1839/atomic-and-plasma-material-interaction-data-for-fusion

  3. J.N. Kavanagh, F.J. Currell, D.J. Timson, K.I. Savage, D.J. Richard, S.J. McMahon, O. Hartley, G.A.P. Cirrone, F. Romano, K.M. Prise, N. Bassler, M.H. Holzscheiter, G. Schettino, Sci. Rep. 3, 1770 (2013)

    Article  Google Scholar 

  4. I.B. Abdurakhmanov, S.U. Alladustov, J.J. Bailey, A.S. Kadyrov, I. Bray, Plasma Phys. Control. Fusion 60, 095009 (2018)

    Article  ADS  Google Scholar 

  5. N.D. Cariatore, D.R. Schultz, Astrophys J Supple Series 252, 7 (2021)

    Article  ADS  Google Scholar 

  6. D. R. Schultz, C. O. Reinhold, and R. E. Olson, Two Center Effects in Ion Atom Collisions, edited by Timothy Gay, Anthony Starace, and M. Eugene Rudd (American Institute of Physics, New York, in press)

  7. J. M. Ramírez-Velásquez and Doménica Romina Bermeo Alvaro, (2019) Basis of Hydrogen- like atoms 18, https://www.researchgate.net/publication/334400965

  8. J. Berakdar, J.S. Briggs, H. Klar, Z Phys D- Atoms Molecules and Clust 24, 351 (1992)

    Article  ADS  Google Scholar 

  9. T. Kirchner and H. Knudsen, J. Phys. B: At. Mol. Opt. Phys. 44, 122001 (2011).

  10. T.E.I. Nassar, Results Phys 7, 2506 (2017)

    Article  ADS  Google Scholar 

  11. A.I. Bondarev, Y.S. Kozhedub, I.I. Tupitsyn, V.M. Shabaev, G. Plunien, Th. Stöhlker, Hyperfine Interact 240, 60 (2019)

    Article  ADS  Google Scholar 

  12. T.E.I. Nassar, R.S. Tantawi, Braz. J. Phys. 51, 369 (2021)

    Article  ADS  Google Scholar 

  13. L. Sarkadi, L. Gulyás, Phys. Rev. A 90, 022702 (2014)

    Article  ADS  Google Scholar 

  14. D.ž Belkić, Phys. B: Atom. Molec. Phys. 20, 3529 (1978)

    Article  ADS  Google Scholar 

  15. I.B. Abdurakhmanov, A.S. Kadyrov, I. Bray, A.T. Stelbovics, J. Phys. B: At. Mol. Opt. Phys. 44, 165203 (2011)

    Article  ADS  Google Scholar 

  16. P.D. Fainstein, V.H. Ponce, R.D. Rivarola, J. Phys. B: At. Mol. Opt. Phys. 24, 3091 (1991)

    Article  ADS  Google Scholar 

  17. H.R.J. Walters, C.T. Whelan, Phys. Rev. A 92, 062712 (2015)

    Article  ADS  Google Scholar 

  18. I.B. Abdurakhmanov, J.J. Bailey, A.S. Kadyrov, I. Bray, Phys. Rev. A 97, 032707 (2018)

    Article  ADS  Google Scholar 

  19. Saeideh Amiri Bidvari and Reza Fathi, Eur. Phys. J. D 74, 55 (2020)

    Article  ADS  Google Scholar 

  20. G. Purohit, Nucl. Inst. Methods Phys. Res. B 487, 52 (2021)

    Article  ADS  Google Scholar 

  21. M. McGovern, T. Colm, H.R.J. WhelanWalters, Phys. Rev. A 82, 032702 (2010)

    Article  ADS  Google Scholar 

  22. H.B. Jarosław, D. Min, Chin Phys B 27, 093202 (2018)

    Article  Google Scholar 

  23. T.E.I. Nassar, R.S. Tantawi, Phys Scr 90, 015402 (2015)

    Article  ADS  Google Scholar 

  24. J.S. Brigs, J.H. Macek, Adv. At. Mol. Opt. Phys. 28, 1 (1990)

    Article  ADS  Google Scholar 

  25. D. Schulz, R.E. Olsont, C.O. Reinhold, M.W. Gealy, G.W. Kerby, Y.Y. Hsu, M.E. Rudd, J. Phys. B: At. Mol. Opt. Phys. 24, 599 (1991)

    Article  ADS  Google Scholar 

  26. S. Sahoo, K. Roy, N.C. Sil, S.C. Mukherjee, Phys Scr 58, 126 (1998)

    Article  ADS  Google Scholar 

  27. G.B. Crooks, M.E. Rudd, Phys. Rev. Lett. 25, 1599 (1970)

    Article  ADS  Google Scholar 

  28. S. Sahoo, Indian J. Phys. 73B, 521 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was done by T.E.I. Nassar and R.S. Tantawi; Method was done by T.E.I. Nassar; Validation was carried out by T.E.I. Nassar and R.S. Tantawi; Investigation was done by T.E.I. Nassar; Resources were done by T.E.I. Nassar and R.S. Tantawi; Data curation was done by T.E.I. Nassar; Writing—original draft preparation were carried out by T.E.I. Nassar; Writing—review and editing were done by T.E.I. Nassar and R.S. Tantawi; Supervision was done by R.S. Tantawi; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to T. E. I. Nassar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassar, T.E.I., Tantawi, R.S. Differential cross sections for ionization of hydrogen-like atoms by proton and antiproton impact. Eur. Phys. J. D 76, 6 (2022). https://doi.org/10.1140/epjd/s10053-021-00324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00324-z

Navigation