Skip to main content
Log in

Monte Carlo simulation of proton track structure in biological matter

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Understanding the radiation-induced effects at the cellular and subcellular levels remains crucial for predicting the evolution of irradiated biological matter. In this context, Monte Carlo track-structure simulations have rapidly emerged among the most suitable and powerful tools. However, most existing Monte Carlo track-structure codes rely heavily on the use of semi-empirical cross sections as well as water as a surrogate for biological matter. In the current work, we report on the up-to-date version of our homemade Monte Carlo code TILDA-V – devoted to the modeling of the slowing-down of 10 keV–100 MeV protons in both water and DNA – where the main collisional processes are described by means of an extensive set of ab initio differential and total cross sections.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nikjoo, S. Uehara, D. Emfietzoglou, F.A. Cucinotta, Radiat. Meas. 41, 1052 (2006)

    Article  Google Scholar 

  2. International Commission on Radiation Units Measurements, ICRU Report 16, ICRU, Washington, DC, USA (1970)

  3. International Commission on Radiation Units Measurements, ICRU Report 49, ICRU, Washington, DC, USA (1993)

  4. International Commission on Radiation Units Measurements, ICRU Report 63, ICRU, Washington, DC, USA (2000)

  5. International Atomic Energy Agency Atomic and Molecular Data for Radiation Therapy and Related Research, IAEA-TECDOC-799, IAEA, Vienna, Austria (1995)

  6. W. Friedland, P. Jacob, P. Bernhardt et al., Radiat. Res. 159, 401 (2003)

    Article  Google Scholar 

  7. M.A. Quinto, J.M. Monti, M.E. Galassi, P.F. Weck, O.A. Fojón, J. Hanssen, R.D. Rivarola, C. Champion, J. Phys. Conf. Ser. 583, 012049 (2015)

    Article  Google Scholar 

  8. C. Champion, A. L’Hoir, M.F. Politis, P.D. Fainstein, R.D. Rivarola, A. Chetioui, Radiat. Res. 163, 222 (2005)

    Article  Google Scholar 

  9. F. Abicht, R. Prasad, M. Borghesi, G. Priebe, J. Braenzel, A. Andreev, P.V. Nickles, M. Schnürer, S. Jequier, G. Revet, V. Tikhonchuk, S. Ter-Avetisyan, Appl. Phys. Lett. 103, 253501 (2013)

    Article  ADS  Google Scholar 

  10. M. Michaud, P. Cloutier, L. Sanche, Phys. Rev. A 44, 5624 (1991)

    Article  ADS  Google Scholar 

  11. J. Meesungnoen, J.P. Jay-Gerin, A. Filali-Mouhim, S. Mankhetkorn, Radiat. Res. 158, 657 (2002)

    Article  Google Scholar 

  12. C. Martin, Ph.D. thesis, Univertity of Toulouse, France, 2003

  13. S.T. Perkins, D.E. Cullen, M.H. Chen, J.H. Hubbel, J. Rathkopf, J. Scofield, Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z = 1–100, Lawrence Livermore National Laboratory Report, UCRL-50400, 30 (1991)

  14. R. Moccia, J. Chem. Phys. 40, 2186 (1964)

    Article  ADS  Google Scholar 

  15. M.E. Galassi, C. Champion, P.F. Weck, R.D. Rivarola, O. Fojón, J. Hanssen, Phys. Med. Biol. 57, 2081 (2012)

    Article  Google Scholar 

  16. M.J. Frisch et al., Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009)

  17. M. Dingfelder, M. Inokuti, H.G. Paretzke, Radiat. Phys. Chem. 59, 255 (2000)

    Article  ADS  Google Scholar 

  18. I. Abril, R. Garcia-Molina, C.D. Denton, I. Kyriakou, D. Emfietzoglou, Radiat. Res. 175, 247 (2011)

    Article  Google Scholar 

  19. P. de Vera, R. Garcia-Molina, I. Abril, Phys. Rev. Lett. 114, 018101 (2015)

    Article  ADS  Google Scholar 

  20. D. Emfietzoglou, K. Karava, G. Papamichael, M. Moscovitch, Phys. Med. Biol. 48, 2355 (2003)

    Article  Google Scholar 

  21. J.A. La Verne, S.M. Pimblott, Radiat. Res. 141, 208 (1995)

    Article  Google Scholar 

  22. Z. Tan, Y. Xia, M. Zhao, X. Liu, Nucl. Instrum. Methods B 248, 1 (2006)

    Article  ADS  Google Scholar 

  23. G.D. Birnie, D. Rickwood, A. Hell, Biochim. Biophys. Acta 331, 283 (1973)

    Article  Google Scholar 

  24. J.M. Monti, O.A. Fojón, J. Hanssen, R.D. Rivarola, J. Phys. B 42, 195201 (2009)

    Article  ADS  Google Scholar 

  25. Y. Iriki, Y. Kikuchi, M. Imai, A. Itoh, Phys. Rev. A 84, 032704 (2011)

    Article  ADS  Google Scholar 

  26. Y. Iriki, Y. Kikuchi, M. Imai, A. Itoh, Phys. Rev. A 84, 052719 (2011)

    Article  ADS  Google Scholar 

  27. J. Tabet, S. Eden, S. Feil, H. Adboul-Carime, B. Farizon, M. Farizon, S. Ouaskit, T.D. Märk, Phys. Rev. A 82, 022703 (2010)

    Article  ADS  Google Scholar 

  28. M.E. Rudd, T.V. Goffe, R.D. DuBois, L.H. Toburen, Phys. Rev. A 31, 492 (1985)

    Article  ADS  Google Scholar 

  29. M.A. Bolorizadeh, M.E. Rudd, Phys. Rev. A 33, 888 (1986)

    Article  ADS  Google Scholar 

  30. H. Luna, A.L.F. Barros, J.A. Wyer, S.W.J. Scully, J. Lecointre, P.M.Y. Garcia, G.M. Sigaud, A.C.F. Santos, V. Senthil, M.B. Shah, C.J. Latimer, E.C. Montenegro, Phys. Rev. A 75, 042711 (2007)

    Article  ADS  Google Scholar 

  31. I.M. Cheshire, Proc. Phys. Soc. 84, 89 (1964)

    Article  ADS  Google Scholar 

  32. Dz. Belkic, R. Gayet, A. Salin, Phys. Rep. 56, 279 (1979)

    Article  ADS  Google Scholar 

  33. A.E. Martinez, G.R. Deco, R.D. Rivarola, P.D. Fainstein, Nucl. Instrum. Methods B 43, 24 (1989)

    Article  ADS  Google Scholar 

  34. P.N. Abufager, A.E. Martínez, R.D. Rivarola, P.D. Fainstein, J. Phys. B 37, 817 (2004)

    Article  ADS  Google Scholar 

  35. A.J. Privett, J.A. Morales, Chem. Phys. Lett. 603, 82 (2014)

    Article  ADS  Google Scholar 

  36. R. Dagnac, D. Blanc, D.D. Molina, J. Phys. B 3, 1239 (1970)

    Article  ADS  Google Scholar 

  37. F. Gobet, B. Farizon, M. Farizon, M.J. Gaillard, Phys. Rev. Lett. 86, 3751 (2001)

    Article  ADS  Google Scholar 

  38. L.H. Toburen, M.Y. Nakai, R.A. Langley, Phys. Rev. 171, 114 (1968)

    Article  ADS  Google Scholar 

  39. M.A. Bolorizadeh, M.E. Rudd, Phys. Rev. A 33, 893 (1986)

    Article  ADS  Google Scholar 

  40. F. Gobet, S. Eden, B. Coupier, J. Tabet, B. Farizon, M. Farizon, M.J. Gaillard, S. Ouaskit, M. Carre, T.D. Märk, Chem. Phys. Lett. 421, 68 (2006)

    Article  ADS  Google Scholar 

  41. J.H. Miller, A.E.S. Green, Radiat. Res. 54, 343 (1973)

    Article  Google Scholar 

  42. S. Uehara, L.H. Toburen, W.E. Wilson, D.T. Goodhead, H. Nikjoo, Radiat. Phys. Chem. 59, 1 (2000)

    Article  ADS  Google Scholar 

  43. J.J. Olivero, R.W. Stagat, A.E.S. Green, J. Geophys. Res. 77, 4797 (1972)

    Article  ADS  Google Scholar 

  44. S. Uehara, L.H. Toburen, H. Nikjoo, Int. J. Radiat. Biol. 77, 139 (2001)

    Article  Google Scholar 

  45. S. Endo, E. Yoshida, H. Nikjoo, M. Hodhi, M. Ishikawa, K. Shizuma, Nucl. Instrum. Methods Phys. Res. B 194, 123 (2002)

    Article  ADS  Google Scholar 

  46. P.S. Krstic, R.R. Schultz, Oak Ridge National Laboratory, Oak Ridge, TN, 1998

  47. C. Champion, C. Le Loirec, B. Stosic, Int. J. Radiat. Biol. 88, 62 (2012)

    Article  Google Scholar 

  48. C. Champion, Phys. Med. Biol. 48, 2147 (2003)

    Article  Google Scholar 

  49. P.L. Levesque, M. Michaud, W. Cho, L. Sanche, J. Chem. Phys. 122, 224704 (2005)

    Article  ADS  Google Scholar 

  50. M. Michaud, M. Bazin, L. Sanche, Int. J. Radiat. Biol. 88, 15 (2012)

    Article  Google Scholar 

  51. T. Fleig, S. Kneht, C. Hättig, J. Phys. Chem. A 111, 5482 (2007)

    Article  Google Scholar 

  52. L.J. Bremner, M.G. Curtis, I.C. Walker, J. Chem. Soc. Faraday Trans. 87, 1049 (1991)

    Article  Google Scholar 

  53. L. Sanche, in Radical and Radical Ion Reactivity in Nucleic Acid Chemistry, edited by M.M. Greenberg (John Wiley & Sons, Inc., 2009)

  54. H. Aouchiche, C. Champion, D. Oubaziz, Radiat. Phys. Chem. 77, 107 (2008)

    Article  ADS  Google Scholar 

  55. M.E. Galassi, P.N. Abufager, A.E. Martinez, R.D. Rivarola, P.D. Fainstein, J. Phys. B 35, 1727 (2002)

    Article  ADS  Google Scholar 

  56. D. Oubaziz, M.A. Quinto, C. Champion, Phys. Rev. A 91, 022703 (2015)

    Article  ADS  Google Scholar 

  57. W. Ulmer, E.A. Matsinos, J. Nucl. Particle Phys. 2, 42 (2012)

    Article  Google Scholar 

  58. W. Ulmer, Int. J. Cancer Ther. Oncol. 2, 020211 (2014)

    Article  Google Scholar 

  59. Y. Matsuzaki, H. Date, K. Lee Sutherland, Y. Kiyanagi, Radiol. Phys. Technol. 3, 84 (2010)

    Article  Google Scholar 

  60. H. Paganetti, Phys. Med. Biol. 47, 747 (2002)

    Article  Google Scholar 

  61. H.K. Reynolds, D.N.F. Dunbar, W.A. Wenzel, W. Whaling, Phys. Rev. 92, 742 (1953)

    Article  ADS  Google Scholar 

  62. J.A. Phillips, Phys. Rev. 90, 532 (1953)

    Article  ADS  Google Scholar 

  63. C. Mitterschiffthaler, P. Bauer, Nucl. Instrum. Methods Phys. Res. B 48, 58 (1990)

    Article  ADS  Google Scholar 

  64. W.Y. Baek, B. Grosswendt, G. Willems, Radiat. Prot. Dosimetry 122, 32 (2006)

    Article  Google Scholar 

  65. M. Shimizu, M. Kaneda, T. Hayakawa, H. Tsuchida, A. Itoh, Nucl. Instrum. Methods B 267, 2667 (2009)

    Article  ADS  Google Scholar 

  66. T. Siiskonen, H. Kettunen, K. Peräjärvi, A. Javanainen, M. Rossi, W.H. Trzaska, J. Turunen, A. Virtanen, Phys. Med. Biol. 56, 2367 (2011)

    Article  Google Scholar 

  67. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 2003)

  68. J.F. Janni, At. Data Nucl. Data Tables 27, 147 (1982)

    Article  ADS  Google Scholar 

  69. Y.J. Xu, G.S. Khandelwal, J.W. Wilson, Phys. Rev. A 32, 629 (1985)

    Article  ADS  Google Scholar 

  70. G. Olivera, A.E. Martínez, R.D. Rivarola, P.D. Fainstein, Radiat. Res. 144, 241 (1995)

    Article  Google Scholar 

  71. P.D. Fainstein, G.H. Olivera, R.D. Rivarola, Nucl. Instrum. Methods B 107, 19 (1996)

    Article  ADS  Google Scholar 

  72. C. Champion, M.E. Galassi, P.F. Weck, O. Fojón, J. Hanssen, R.D. Rivarola, in Radiation Damage in Biomolecular Systems, Biological and Medical Physics, Biomedical Engineering, edited by G.G. Gómez-Tejedor, M.C. Fuss (Springer Science, 2012), pp. 263–289

  73. C. Champion, M.A. Quinto, J.M. Monti, M.E. Galassi, P.F. Weck, O.A. Fojn, J. Hanssen, R.D. Rivarola, Phys. Med. Biol. 60, 7805 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Champion.

Additional information

Contribution to the Topical Issue “Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces”, edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov’yov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinto, M.A., Monti, J.M., Weck, P.F. et al. Monte Carlo simulation of proton track structure in biological matter. Eur. Phys. J. D 71, 130 (2017). https://doi.org/10.1140/epjd/e2017-70709-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70709-6

Keywords

Navigation