Skip to main content

Electron Transport Modeling in Biological Tissues: From Water to DNA

  • Conference paper
  • First Online:
Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 230))

  • 507 Accesses

Abstract

A proper and reliable description of charged particles interactions in the biological matter remains a critical aspect of radiation research. All the more so when new and better methods for treating cancer through the use of ionizing radiation are emerging on the horizon such as targeted alpha therapy. In this context, Monte Carlo track-structure codes are extremely useful tools to study radiation-induced effects at the atomic scale. In the present work, we review the latest version of CELLDOSE, a homemade Monte Carlo track-structure code devoted to electron dosimetry in biological matter. We report here some recent results concerning the stopping power and penetration range of electrons in water and DNA for impact energies ranging from 10 eV to 10 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikjoo, H., Uehara, S., Emfietzoglou, D., Cucinotta, F.A.: Track-structure codes in radiation research. Radiat. Meas. 41, 1052–1074 (2006). https://doi.org/10.1016/j.radmeas.2006.02.001

    Article  Google Scholar 

  2. Nikjoo, H., Emfietzoglou, D., Liamsuwan, T., Taleei, R., Liljequist, D., Uehara, S.: Radiation track, DNA damage and response-a review. Rep. Prog. Phys. 79, 116601 (2016). https://doi.org/10.1088/0034-4885/79/11/116601

    Article  ADS  Google Scholar 

  3. Kyriakou, I., Emfietzoglou, D., Ivanchenko, V., Bordage, M.C., Guatelli, S., Lazarakis, P., Tran, H.N., Incerti, S.: Microdosimetry of electrons in liquid water using the low-energy models of Geant4. J. Appl. Phys. 122, 024303 (2017). https://doi.org/10.1063/1.4992076

    Article  ADS  Google Scholar 

  4. Nikjoo, H., Taleei, R., Liamsuwan, T., Liljequist, D., Emfietzoglou, D.: Perspectives in radiation biophysics: from radiation track structure simulation to mechanistic models of DNA damage and repair. Radiat. Phys. Chem. 128, 3–10 (2016). https://doi.org/10.1016/j.radphyschem.2016.05.005

    Article  ADS  Google Scholar 

  5. Friedland, W., Dingfelder, M., Kundrát, P., Jacob, P.: Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat. Res. Fund Mol. Mech. Mutagen. 711, 28–40 (2011). https://doi.org/10.1016/j.mrfmmm.2011.01.003

    Article  Google Scholar 

  6. Quinto, M.A., Monti, J.M., Weck, P.F., Fojón, O.A., Hanssen, J., Rivarola, R.D., Senot, P., Champion, C.: Monte Carlo simulation of proton track structure in biological matter. Eur. Phys. J. D 71, 130 (2017). https://doi.org/10.1140/epjd/e2017-70709-6

    Article  ADS  Google Scholar 

  7. Champion, C., Zanotti-Fregonara, P., Hindié, E.: CELLDOSE: a Monte Carlo code to assess electron dose distribution S values for \(^{131}\)I in spheres of various sizes. J. Nucl. Med. 49, 151–157 (2007). https://doi.org/10.2967/jnumed.107.045179

    Article  Google Scholar 

  8. Champion, C., Hanssen, J., Hervieux, P.A.: Electron impact ionization of water molecule. J. Chem. Phys. 117, 197–204 (2002). https://doi.org/10.1063/1.1472513

    Article  ADS  Google Scholar 

  9. Aouchiche, H., Champion, C., Oubaziz, D.: Electron and positron elastic scattering in gaseous and liquid water: a comparative study. Radiat. Phys. Chem. 77, 107–114 (2008). https://doi.org/10.1016/j.radphyschem.2007.09.004

    Article  ADS  Google Scholar 

  10. Champion, C.: Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components. J. Chem. Phys. 138, 184306 (2013). https://doi.org/10.1063/1.4802962

    Article  ADS  Google Scholar 

  11. Champion, C.: Theoretical cross sections for electron collisions in water: structure of electron tracks. Phys. Med. Biol. 48, 2147–2168 (2003). https://doi.org/10.1088/0031-9155/48/14/308

    Article  Google Scholar 

  12. Champion, C., Le Loirec, C., Stosic, B.: EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water. Int. J. Radiat. Biol. 88, 54–61 (2012). https://doi.org/10.3109/09553002.2011.641451

    Article  Google Scholar 

  13. Champion, C., Quinto, M.A., Morgat, C., Zanotti-Fregonara, P., Hindié, E.: Comparison between three promising \(\beta \)-emitting radionuclides, \(^{67}\)Cu, \(^{47}\)Sc and \(^{161}\)Tb, with emphasis on doses delivered to minimal residual disease. Theranostics 6, 1611–1618 (2016). https://doi.org/10.7150/thno.15132

    Article  Google Scholar 

  14. Hindié, E., Champion, C., Zanotti-Fregonara, P., Rubello, D., Colas-Linhart, N., Ravasi, L., Moretti, J.-L.: Calculation of electron dose to target cells in a complex environment by Monte Carlo code “CELLDOSE”. Eur. J. Nucl. Med. Mol. Imaging 36, 130–136 (2009). https://doi.org/10.1007/s00259-008-0893-z

    Article  Google Scholar 

  15. Moccia, R.: One-center basis set SCF MO’s. III. \(\text{H}_2\text{ O }\), \(\text{ H }_2\text{ S }\), and HCL. J. Chem. Phys. 40, 2186–2192 (1964). https://doi.org/10.1063/1.1725491

    Article  ADS  Google Scholar 

  16. Frisch, M.J., et al.: Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford, CT (2009)

    Google Scholar 

  17. Galassi, M.E., Champion, C., Weck, P.F., Rivarola, R.D., Fojón, O., Hanssen, J.: Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams. Phys. Med. Biol. 57, 2081–2099 (2012). https://doi.org/10.1088/0031-9155/57/7/2081

    Article  Google Scholar 

  18. Tan, Z., Xia, Y., Zhao, M., Liu, X.: Proton stopping power in a group of bioorganic compounds over the energy range of 0.05–10 MeV. Nucl. Instrum. Methods B 248, 1–6 (2006). https://doi.org/10.1016/j.nimb.2006.04.073

    Article  ADS  Google Scholar 

  19. Birnie, G.D., Rickwood, D., Hell, A.: Buoyant densities and hydration of nucleic acids, proteins and nucleoprotein complexes in metrizamide. Biochim. Biophys. Acta 331, 283–294 (1973). https://doi.org/10.1016/0005-2787(73)90441-3

    Article  Google Scholar 

  20. Dingfelder, M., Inokuti, M., Paretzke, H.G.: Inelastic-collision cross sections of liquid water for interactions of energetic protons. Radiat. Phys. Chem. 59, 255–275 (2000). https://doi.org/10.1016/S0969-806X(00)00263-2

    Article  ADS  Google Scholar 

  21. Abril, I., Garcia-Molina, R., Denton, C.D., Kyriakou, I., Emfietzoglou, D.: Energy loss of hydrogen- and helium-ion beams in DNA: calculations based on a realistic energy-loss function of the target. Radiat. Res. 175, 247–255 (2011)

    Article  ADS  Google Scholar 

  22. de Vera, P., Garcia-Molina, R., Abril, I.: Angular and energy distributions of electrons produced in arbitrary biomaterials by proton impact. Phys. Rev. Lett. 114, 018101 (2015). https://doi.org/10.1103/PhysRevLett.114.018101

    Article  ADS  Google Scholar 

  23. Emfietzoglou, D., Karava, K., Papamichael, G., Moscovitch, M.: Monte Carlo simulation of the energy loss of low-energy electrons in liquid water. Phys. Med. Biol. 48, 2355–2371 (2003). https://doi.org/10.1088/0031-9155/48/15/308

    Article  Google Scholar 

  24. Blanco, F., Roldán, A.M., Krupa, K., McEachran, R.P., White, R.D., Marjanović, S., Petrović, Z.L., Brunger, M.J., Machacek, J.R., Buckman, S.J., Sullivan, J.P., Chiari, L., Limão-Vieira, P., García, G.: Scattering data for modelling positron tracks in gaseous and liquid water. J. Phys. B At. Mol. Opt. Phys. 49, 145001 (2016). https://doi.org/10.1088/0953-4075/49/14/145001

    Article  ADS  Google Scholar 

  25. Champion, C.: Electron impact ionization of liquid and gaseous water: a single-center partial-wave approach. Phys. Med. Biol. 55, 11–32 (2010). https://doi.org/10.1088/0031-9155/55/1/002

    Article  Google Scholar 

  26. Neuefeind, J., Benmore, C.J., Tomberli, B., Egelstaff, P.A.: Experimental determination of the electron density of liquid H\(_2\)O and D\(_2\)O. J. Phys. Condens. Matter 14, L429–L433 (2002). https://doi.org/10.1088/0953-8984/14/23/104

    Article  ADS  Google Scholar 

  27. Ichikawa, K., Kameda, Y., Yamaguchi, T., Wakita, H., Misawa, M.: Neutron-diffraction investigation of the intramolecular structure of a water molecule in the liquid phase at high temperatures. Mol. Phys. 73, 79–86 (1991). https://doi.org/10.1080/00268979100101071

    Article  ADS  Google Scholar 

  28. Moriarty, N.W., Karlström, G.: Geometry optimization of a water molecule in water. A combined quantum chemical and statistical mechanical treatment. J. Chem. Phys. 106, 6470–6474 (1997). https://doi.org/10.1063/1.473637

    Article  ADS  Google Scholar 

  29. Salvat, F.: Optical-model potential for electron and positron elastic scattering by atoms. Phys. Rev. A 68, 012708 (2003). https://doi.org/10.1103/PhysRevA.68.012708

    Article  ADS  Google Scholar 

  30. Jain, A., Thompson, D.G.: Elastic scattering of slow electrons by CH\(_4\) and H\(_2\)O using a local exchange potential and new polarisation potential. J. Phys. B At. Mol. Phys. 15, L631–L637 (1982). https://doi.org/10.1088/0022-3700/15/17/012

    Article  ADS  Google Scholar 

  31. Mittleman, M.H., Watson, K.M.: Effects of the Pauli principle on the scattering of high-energy electrons by atoms. Ann. Phys. 10, 268–279 (1960) (New York). https://doi.org/10.1016/0003-4916(60)90024-5

    Article  ADS  MathSciNet  Google Scholar 

  32. Padial, N.T., Norcross, D.W.: Parameter-free model of the correlation-polarization potential for electron-molecule collisions. Phys. Rev. A 29, 1742–1748 (1984). https://doi.org/10.1103/PhysRevA.29.1742

    Article  ADS  Google Scholar 

  33. Jain, A.: Low-energy positron-argon collisions by using parameter-free positron correlation polarization potentials. Phys. Rev. A 41, 2437–2444 (1990). https://doi.org/10.1103/PhysRevA.41.2437

    Article  ADS  Google Scholar 

  34. Riley, M.E., Truhlar, D.G.: Approximations for the exchange potential in electron scattering. J. Chem. Phys. 63, 2182–2191 (1975). https://doi.org/10.1063/1.431598

    Article  ADS  Google Scholar 

  35. Champion, C., Hanssen, J., Rivarola, R.D.: The first born approximation for ionization and charge transfer in energetic collisions of multiply charged ions with water. In: Advances in Quantum Chemistry. Elsevier, pp. 269–313 (2013). https://doi.org/10.1016/B978-0-12-396455-7.00010-8

    Chapter  Google Scholar 

  36. Champion, C., Cappello, C.D., Houamer, S., Mansouri, A.: Single ionization of the water molecule by electron impact: angular distributions at low incident energy. Phys. Rev. A 73, 012717 (2006). https://doi.org/10.1103/PhysRevA.73.012717

    Article  ADS  Google Scholar 

  37. Ritchie, R.H., Hamm, R.N., Turner, J.E., Wright, H.A.: The interaction of swift electrons with liquid water. In: 6th Symposium on Microdosimetry, pp. 345–354. Harwood Academic, London (1978)

    Google Scholar 

  38. Ashley, J.C.: Stopping power of liquid water for low-energy electrons. Radiat. Res. 89, 25–31 (1982). https://doi.org/10.2307/3575681

    Article  ADS  Google Scholar 

  39. Emfietzoglou, D.: Inelastic cross-sections for electron transport in liquid water: a comparison of dielectric models. Radiat. Phys. Chem. 66, 373–385 (2003). https://doi.org/10.1016/S0969-806X(02)00504-2

    Article  ADS  Google Scholar 

  40. Emfietzoglou, D., Cucinotta, F.A., Nikjoo, H.: A complete dielectric response model for liquid water: a solution of the bethe ridge problem. Radiat. Res. 164, 202–211 (2005). https://doi.org/10.1667/RR3399

    Article  ADS  Google Scholar 

  41. Emfietzoglou, D., Nikjoo, H.: Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1–10 keV range based on an improved dielectric description of the Bethe surface. Radiat. Res. 167, 110–120 (2007). https://doi.org/10.1667/RR0551.1

    Article  ADS  Google Scholar 

  42. Olivero, J.J., Stagat, R.W., Green, A.E.S.: Electron deposition in water vapor, with atmospheric applications. J. Geophys. Res. 77, 4797–4811 (1972). https://doi.org/10.1029/JA077i025p04797

    Article  ADS  Google Scholar 

  43. Green, A.E.S., Dutta, S.K.: Semi-empirical cross sections for electron impacts. J. Geophys. Res. 72, 3933–3941 (1967). https://doi.org/10.1029/JZ072i015p03933

    Article  ADS  Google Scholar 

  44. Compton, R.N., Christophorou, L.G.: Negative-ion formation in H\(_2\)O and D\(_2\)O. Phys. Rev. 154, 110–116 (1967). https://doi.org/10.1103/PhysRev.154.110

    Article  ADS  Google Scholar 

  45. Hervieux, P.-A., Fojón, O.A., Champion, C., Rivarola, R.D., Hanssen, J.: Positronium formation in collisions of fast positrons impacting on vapour water molecules. J. Phys. B. At. Mol. Opt. 39, 409–419 (2006). https://doi.org/10.1088/0953-4075/39/2/015

    Article  ADS  Google Scholar 

  46. Quinto, M.A., Monti, J.M., Galassi, M.E., Weck, P.F., Fojón, O.A., Hanssen, J., Rivarola, R.D., Champion, C.: Proton track structure code in biological matter. J. Phys. Conf. Ser. 583, 012049 (2015). https://doi.org/10.1088/1742-6596/583/1/012049

    Article  Google Scholar 

  47. Garcia-Molina, R., Abril, I., Heredia-Avalos, S., Kyriakou, I., Emfietzoglou, D.: A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water. Phys. Med. Biol. 56, 6475–6493 (2011). https://doi.org/10.1088/0031-9155/56/19/019

    Article  Google Scholar 

  48. Liamsuwan, T., Uehara, S., Emfietzoglou, D., Nikjoo, H.: Physical and biophysical properties of proton tracks of energies 1 keV to 300 MeV in water. Int. J. Radiat. Biol. 87, 141–160 (2011). https://doi.org/10.3109/09553002.2010.518204

    Article  Google Scholar 

  49. Mulford, D.A., Scheinberg, D.A., Jurcic, J.G.: The promise of targeted \(\alpha \)-particle therapy. J. Nucl. Med. 46, 199S–204S (2005)

    Google Scholar 

  50. Huang, C.-Y., Guatelli, S., Oborn, B.M., Allen, B.J.: Microdosimetry for targeted alpha therapy of cancer. Comput. Math. Methods Med. 2012, 1–6 (2012). https://doi.org/10.1155/2012/153212

    Article  Google Scholar 

  51. International Atomic Energy Agency: Atomic and Molecular Data for Radiotherapy and Radiation Research IAEA-TECDOC-799. IAEA, Vienna (1995)

    Google Scholar 

  52. International Commission on Radiation Units and Measurements: ICRU Report 16 Linear Energy Transfer. ICRU, Bethesda, MD (1970)

    Google Scholar 

  53. Garcia-Molina, R., Abril, I., Kyriakou, I., Emfietzoglou, D.: Inelastic scattering and energy loss of swift electron beams in biologically relevant materials: energy loss of electron beams in biomaterials. Surf. Interface Anal. 49, 11–17 (2017). https://doi.org/10.1002/sia.5947

    Article  Google Scholar 

  54. Tan, Z., Xia, Y., Zhao, M., Liu, X.: Electron stopping power and inelastic mean free path in amino acids and protein over the energy range of 20–20,000 eV. Radiat. Environ. Biophys. 45, 135–143 (2006). https://doi.org/10.1007/s00411-006-0049-0

    Article  Google Scholar 

  55. Paretzke, H.G.: Simulation von Elektronenspuren im Energiebereich 0.01–10 keV in Wasserdampf. Report No. 24/88, GSF—National Research Center for Health and Environment (1988)

    Google Scholar 

  56. Meesungnoen, J., Filali-Mouhim, A., Mankhetkorn, S.: Low-energy electron penetration range in liquid water. Radiat. Res. 158, 657–660 (2002)

    Article  ADS  Google Scholar 

  57. Bordage, M.C., Bordes, J., Edel, S., Terrissol, M., Franceries, X., Bardiès, M., Lampe, N., Incerti, S.: Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA. Phys. Med. 32, 1833–1840 (2016). https://doi.org/10.1016/j.ejmp.2016.10.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Champion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alcocer-Ávila, M.E., Quinto, M.A., Monti, J.M., Rivarola, R.D., Champion, C. (2019). Electron Transport Modeling in Biological Tissues: From Water to DNA. In: Deshmukh, P., Krishnakumar, E., Fritzsche, S., Krishnamurthy, M., Majumder, S. (eds) Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons. Springer Proceedings in Physics, vol 230. Springer, Singapore. https://doi.org/10.1007/978-981-13-9969-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9969-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9968-8

  • Online ISBN: 978-981-13-9969-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics