Skip to main content

Monte Carlo-Based Modeling of Secondary Particle Tracks Generated by Intermediate- and Low-Energy Protons in Water

  • Chapter
  • First Online:
Nanoscale Insights into Ion-Beam Cancer Therapy

Abstract

This chapter gives an overview of recent developments in the Monte Carlo-based modeling of the interaction of ionizing radiation with biologically relevant systems. Several track structure codes, such as Geant4 (GEometry ANd Tracking 4), Geant4-DNA, and LEPTS (Low-Energy Particle Track Simulation), are described. Main features, areas of application and current limitations of each tool are discussed. A special attention is focused on the energy range covered by primary and secondary charged particles and on the type of interactions included in the simulation. A recent development of LEPTS is presented, aimed at the simulation of full slowing-down of protons in water together with all molecular processes involving secondary particles. The utilized approach allows one to study radiation effects on the nanoscale in terms of the number and the type of induced molecular processes. Development of new tools for the simulation of biologically relevant materials opens the way for a more realistic, physically meaningful description of radiation damage in living tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcia Gomez-Tejedor G, Fuss MC (eds) (2012) Radiation damage in biomolecular systems. Springer Science+Business Media B.V

    Google Scholar 

  2. Boudaïffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287:1658–1660

    Article  ADS  Google Scholar 

  3. Surdutovich E, Solov’yov AV (2014) Multiscale approach to the physics of radiation damage with ions. Eur Phys J D 68:353

    Article  ADS  Google Scholar 

  4. Oller JC, Ellis-Gibbings L, Ferreira da Silva F, Limão-Vieira P, García G (2015) Novel experimental setup for time-of-flight mass spectrometry ion detection in collisions of anionic species with neutral gas-phase molecular targets. EPJ Tech Instrum 2:13

    Article  Google Scholar 

  5. Blanco F, Muñoz A, Almeida D, Ferreira da Silva F, Limão-Vieira P, Fuss MC, Sanz AG, García G (2013) Modelling low energy electron and positron tracks in biologically relevant media. Eur Phys J D 67:199

    Article  ADS  Google Scholar 

  6. Muñoz A, Pérez JM, García G, Blanco F (2005) An approach to Monte Carlo simulation of low-energy electron and photon interactions in air. Nucl Instrum Meth A 536:176–188

    Article  ADS  Google Scholar 

  7. Krämer M, Kraft G (1994) Calculations of heavy-ion track structure. Radiat Environ Biophys 33:91–109

    Article  Google Scholar 

  8. Friedland W, Jacob P, Bernhardt P, Paretzke HG, Dingfelder M (2003) Simulation of DNA damage after proton irradiation. Radiat Res 159:401–410

    Article  Google Scholar 

  9. Nikjoo H, Uehara S, Emfietzoglou D, Cucinotta FA (2006) Track-structure codes in radiation research. Radiat Meas 41:1052–1074

    Article  Google Scholar 

  10. Incerti S et al (2010) Comparison of GEANT4 very low energy cross section models with experimental data in water. Med Phys 37:4692–4708

    Article  Google Scholar 

  11. Quinto MA et al (2015) Proton track structure code in biological matter. J Phys: Conf Ser 583:012049

    ADS  Google Scholar 

  12. Huels MA, Boudaïffa B, Cloutier P, Hunting D, Sanche L (2003) Single, double, and multiple double strand breaks induced in DNA by 3–100 eV electrons. J Am Chem Soc 125:4467–4477

    Article  Google Scholar 

  13. Pan X, Cloutier P, Hunting D, Sanche L (2003) Dissociative electron attachment to DNA. Phys Rev Lett 90:208102

    Article  ADS  Google Scholar 

  14. Baccarelli I, Gianturco FA, Scifoni E, Solov’yov AV, Surdutovich E (2010) Molecular level assessments of radiation biodamage. Eur Phys J D 60:1–10

    Article  ADS  Google Scholar 

  15. FP7 Initial Training Network Project “Advanced Radiotherapy, Generated by Exploiting Nanoprocesses and Technologies” (ARGENT). http://www.itn-argent.eu

  16. Arce P, Muñoz A, Moraleda M, Ros JMG, Blanco F, Perez JM, García G (2015) Integration of the low-energy particle track simulation code in Geant4. Eur Phys J D 69:188

    Google Scholar 

  17. Fuss MC, Ellis-Gibbings L, Jones DB, Brunger MJ, Blanco F, Muñoz A, Limão-Vieira P, García G (2015) The role of pyrimidine and water as underlying molecular constituents for describing radiation damage in living tissue: a comparative study. J Appl Phys 117:214701

    Article  ADS  Google Scholar 

  18. Agostinelli S et al (2003) Geant4—a simulation toolkit. Nucl Instr Meth A 506:250–303

    Article  ADS  Google Scholar 

  19. Allison J et al (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53:270–278

    Article  ADS  Google Scholar 

  20. Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 82:383–425

    Article  ADS  Google Scholar 

  21. Paganetti H, Jiang H, Parodi K, Slopsema R, Engelsman M (2008) Clinical implementation of full Monte Carlo dose calculation in proton beam therapy. Phys Med Biol 53:4825–4853

    Article  Google Scholar 

  22. Petti PL (1996) Evaluation of a pencil-beam dose calculation technique for charged particle radiotherapy. Int J Radiat Oncol Biol Phys 35:1049–1057

    Article  Google Scholar 

  23. Schaffner B, Pedroni E, Lomax A (1999) Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation. Phys Med Biol 44:27–41

    Article  Google Scholar 

  24. Soukup M, Alber M (2007) Influence of dose engine accuracy on the optimum dose distribution in intensity-modulated proton therapy treatment plans. Phys Med Biol 52:725–740

    Article  Google Scholar 

  25. Soukup M, Fippel M, Alber M (2005) A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations. Phys Med Biol 50:5089–5104

    Article  Google Scholar 

  26. Szymanowski H, Oelfke U (2002) Two-dimensional pencil beam scaling: an improved proton dose algorithm for heterogeneous media. Phys Med Biol 47:3313–3330

    Article  Google Scholar 

  27. Tourovsky A, Lomax AJ, Schneider U, Pedroni E (2005) Monte Carlo dose calculations for spot scanned proton therapy. Phys Med Biol 50:971–981

    Article  Google Scholar 

  28. Titt U et al (2008) Assessment of the accuracy of an MCNPX-based Monte Carlo simulation model for predicting three-dimensional absorbed dose distributions. Phys Med Biol 53:4455–4470

    Article  Google Scholar 

  29. Paganetti H (2012) Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol 57:R99–R117

    Article  ADS  Google Scholar 

  30. Pia MG, Begalli M, Lechner A, Quintieri L, Saracco P (2010) Physics-related epistemic uncertainties in proton depth dose simulation. IEEE Trans Nucl Sci 57:2805–2830

    Article  ADS  Google Scholar 

  31. Lewis HW (1950) Multiple scattering in an infinite medium. Phys Rev 78:526–529

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Moteabbed M, España S, Paganetti H (2011) Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy. Phys Med Biol 56:1063–1082

    Article  Google Scholar 

  33. Robert C et al (2013) Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes. Phys Med Biol 58:2879–2899

    Article  Google Scholar 

  34. Jarlskog CZ, Paganetti H (2008) Physics settings for using the Geant4 toolkit in proton therapy. IEEE Trans Nucl Sci 55:1018–1025

    Article  ADS  Google Scholar 

  35. Chauvie S, Francis Z, Guatelli S, Incerti S, Mascialino B, Moretto P, Nieminen P, Pia MG (2007) Geant4 physics processes for microdosimetry simulation: design foundation and implementation of the first set of models. IEEE Trans Nucl Sci 54:2619–2628

    Article  ADS  Google Scholar 

  36. Francis Z, Incerti S, Capra R, Mascialino B, Montarou G, Stepan V, Villagrasa C (2011) Molecular scale track structure simulations in liquid water using the Geant4-DNA Monte-Carlo processes. Appl Radiat Isot 69:220–226

    Article  Google Scholar 

  37. Champion C, Incerti S, Aouchiche H, Oubaziz D (2009) A free-parameter theoretical model for describing the electron elastic scattering in water in the Geant4 toolkit. Radiat Phys Chem 78:745–750

    Article  ADS  Google Scholar 

  38. Champion C, Incerti S, Tran HN, El Bitar Z (2012) Electron and proton elastic scattering in water vapour. Nucl Instrum Meth B 273:98–101

    Article  ADS  Google Scholar 

  39. Champion C et al (2013) Proton transport in water and DNA components: a Geant4 Monte Carlo simulation. Nucl Instrum Meth B 306:165–168

    Article  ADS  Google Scholar 

  40. Kyriakou I, Incerti S, Francis Z (2015) Improvements in Geant4 energy-loss model and the effect on low-energy electron transport in liquid water. Med Phys 42:3870–3876

    Article  Google Scholar 

  41. Tran HN et al (2015) Modeling proton and alpha elastic scattering in liquid water in Geant4-DNA. Nucl Instrum Meth B 343:132–137

    Article  ADS  Google Scholar 

  42. Brenner DJ, Zaider M (1984) A computationally convenient parameterisation of experimental angular distributions of low energy electrons elastically scattered off water vapour. Phys Med Biol 29:443–447

    Article  Google Scholar 

  43. Uehara S, Nikjoo H, Goodhead DT (1993) Cross-sections for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region. Phys Med Biol 38:1841–1858

    Article  Google Scholar 

  44. Heller JM Jr, Hamm RN, Birkhoff RD, Painter LR (1974) Collective oscillation in liquid water. J Chem Phys 60:3483–3486

    Article  ADS  Google Scholar 

  45. Emfietzoglou D (2003) Inelastic cross-sections for electron transport in liquid water: a comparison of dielectric models. Radiat Phys Chem 66:373–385

    Article  ADS  Google Scholar 

  46. Michaud M, Wen A, Sanche L (2003) Cross sections for low-energy (\(1-100\) eV) electron elastic and inelastic scattering in amorphous ice. Radiat Res 159:3–22

    Article  Google Scholar 

  47. Melton CE (1972) Cross sections and interpretation of dissociative attachment reactions producing OH\(^-\), O\(^-\), and H\(^-\) in H\(_2\)O. J Chem Phys 57:4218–4225

    Article  ADS  Google Scholar 

  48. Miller JH, Green AES (1973) Proton energy degradation in water vapor. Radiat Res 54:343–363

    Article  Google Scholar 

  49. Dingfelder M, Inokuti M, Paretzke HG (2000) Inelastic-collision cross sections of liquid water for interactions of energetic protons. Radiat Phys Chem 59:255–275

    Article  ADS  Google Scholar 

  50. Rudd ME, Kim Y-K, Madison DH, Gay TJ (1992) Electron production in proton collisions with atoms and molecules: energy distributions. Rev Mod Phys 64:441–490

    Article  ADS  Google Scholar 

  51. Dingfelder M, Jorjishvili IG, Gersh JA, Toburen LH (2006) Heavy ion track structure simulations in liquid water at relativistic energies. Radiat Prot Dos 122:26–27

    Article  Google Scholar 

  52. Dingfelder M, Toburen LH, Paretzke HG (2005) An effective charge scaling model for ionization of partially dressed helium ions with liquid water. In: Proceedings of the Monte Carlo 2005 Topical Meeting, Chattanooga, TN, 17–21 April 2005, American Nuclear Society, La Grange Park, IL, pp 1–12

    Google Scholar 

  53. Booth W, Grant IS (1965) The energy loss of oxygen and chlorine ions in solids. Nucl Phys 63:481–495

    Article  Google Scholar 

  54. Muñoz A, Blanco F, Oller JC, Pérez JM, García G (2007) Advances in quantum chemistry. In: Sabin JR, Brändas E (eds). vol 52, pp 21–57. Academic Press

    Google Scholar 

  55. Gobet F et al (2004) Ionization of water by (\(20-150\))-keV protons: separation of direct-ionization and electron-capture processes. Phys Rev A 70:062716

    Article  ADS  Google Scholar 

  56. Luna H et al (2007) Water-molecule dissociation by proton and hydrogen impact. Phys Rev A 75:042711

    Article  ADS  Google Scholar 

  57. Errea LF, Illescas C, Méndez L, Pons B, Rabadán I, Riera A (2007) Classical calculation of ionization and electron-capture total cross sections in H\(^+\) + H\(_2\)O collisions. Phys Rev A 76:040701(R)

    Article  ADS  Google Scholar 

  58. Murakami M, Kirchner T, Horbatsch M, Lüdde HJ (2012) Single and multiple electron removal processes in proton-water-molecule collisions. Phys Rev A 85:052704

    Article  ADS  Google Scholar 

  59. Errea LF, Illescas C, Méndez L, Rabadán I (2013) Ionization of water molecules by proton impact: two nonperturbative studies of the electron-emission spectra. Phys Rev A 87:032709

    Article  ADS  Google Scholar 

  60. Green AES, McNeal RJ (1971) Analytic cross sections for inelastic collisions of protons and hydrogen atoms with atomic and molecular gases. J Geophys Res 76:133–144

    Article  ADS  Google Scholar 

  61. Uehara S, Toburen LH, Nikjoo H (2001) Development of a Monte Carlo track structure code for low-energy protons in water. Int J Radiat Biol 2:139–154

    Article  Google Scholar 

  62. Rudd ME, Goffe TV, DuBois RD, Toburen LH (1985) Cross sections for ionization of water vapor by 7–4000-keV protons. Phys Rev A 31:492–494

    Article  ADS  Google Scholar 

  63. Bolorizadeh MA, Rudd ME (1986) Angular and energy dependence of cross sections for ejection of electrons from water vapor. II. 15–150-keV proton impact. Phys Rev A 33:888–892

    Article  ADS  Google Scholar 

  64. Werner U, Beckord K, Becker J, Lutz HO (1995) 3D imaging of the collision-induced Coulomb fragmentation of water molecules. Phys Rev Lett 74:1962–1965

    Article  ADS  Google Scholar 

  65. Toburen LH, Wilson WE (1977) Energy and angular distributions of electrons ejected from water vapor by 0.3–1.5 MeV protons. J Chem Phys 66:5202–5213

    Article  ADS  Google Scholar 

  66. Senger B, Rechenmann RV (1984) Angular and energy distributions of \(\delta \)-rays ejected from low-Z molecular targets by incident protons and \(\alpha \) particles. Nucl Instrum Meth B 2:204–207

    Article  ADS  Google Scholar 

  67. Wilson WE, Miller JH, Toburen LH, Manson ST (1984) Differential cross sections for ionization of methane, ammonia, and water vapor by high velocity ions. J Chem Phys 80:5631–5638

    Article  ADS  Google Scholar 

  68. de Vera P, Garcia-Molina R, Abril I, Solov’yov AV (2013) Semiempirical model for the ion impact ionization of complex biological media. Phys Rev Lett 110:148104

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support received from the European Union Seventh Framework Programme (PEOPLE-2013-ITN-ARGENT project) under grant agreement no. 608163 and from the Spanish Ministerio de Economia y Competitividad (Project no. FIS2012-31230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Verkhovtsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Verkhovtsev, A., Arce, P., Muñoz, A., Blanco, F., García, G. (2017). Monte Carlo-Based Modeling of Secondary Particle Tracks Generated by Intermediate- and Low-Energy Protons in Water. In: Solov’yov, A. (eds) Nanoscale Insights into Ion-Beam Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-43030-0_3

Download citation

Publish with us

Policies and ethics