Skip to main content
Log in

First principles gas phase study of the structures, energetics and spectroscopic parameters of aluminium antimonide, Al x Sb y (x + y = 3, 5), clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Theoretical methods (DFT/B3LYP and MP2) have been used to optimize the geometries of the Al x Sb y (x + y = 3, 5) clusters and their anions. Single point energy computations at CCSD(T) level have also been performed using the optimized B3LYP and MP2 structures. The basis sets used for Al and Sb atoms are 6-311+G(2d) and LANL2DZdp ECP, respectively. Harmonic vibrational frequency computations were carried out to confirm the nature of the stationary points. We report the structural and spectroscopic parameters of the named clusters. We also report the relative energy of the clusters, the vertical electron detachment energy, the adiabatic electron detachment energy and the adiabatic electron affinity. The most stable structures at the CCSD(T)//MP2 level are, the D h linear structure (AlSb2) and the C 2v V-bent structure (AlSb 2 ), the C 2v V-bent structure (Al2Sb and its anion), the C 2v edge-capped tetrahedron (Al2Sb3 and its anion), the C 2v trigonal bipyramidal structure (Al3Sb2 and its anion), the C 4v square pyramidal (AlSb4) and a C 2v ground structure for its anion, the C 2v planar trapezoidal structure (Al4Sb) and the C 2v edge-capped tetrahedron (Al4Sb). The adiabatic electron affinities calculated at the CCSD(T)//MP2 level are 2.17 eV (AlSb2), 2.17 eV (Al2Sb), 2.38 eV (Al2Sb3), 2.76 eV (Al3Sb2), 2.21 eV (AlSb4) and 2.03 eV (Al4Sb). The findings of this research are analysed, discussed and compared with the analogous picnogenides clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mirzael, M. Mirzael, Int. J. Quantum Chem. 111, 3851 (2011)

    Google Scholar 

  2. F. Hatami, W.T. Masselink, L. Schrottke, J.W. Tomm, V. Talalaev, C. Kristukat, A.R. Goni, Phys. Rev. B 67, 085306 (2003)

    Article  ADS  Google Scholar 

  3. O.I. Micic, H.M. Cheong, H. Fu, A. Zunger, J.R. Sprague, A. Mascarenhas, A.J. Nozik, J. Phys. Chem. B 101, 4904 (1997)

    Article  Google Scholar 

  4. S. Kan, T. Mokari, E. Rothenberg, U. Banin, Nat. Mater. 2, 155 (2003)

    Article  ADS  Google Scholar 

  5. Y.R. Toda, K.S. Chandhari, A.B. Jain, D.N. Gujarathi, Arch. Phys. Res. 2, 146 (2011)

    Google Scholar 

  6. U. Meier, S.D. Peyerimhoff, F. Grein, J. Chem. Phys. 150, 331 (1991)

    Google Scholar 

  7. U. Meier, S.D. Peyerimhoff, P.J. Bruna, F. Grein, J. Mol. Spectrosc. 134, 259 (1989)

    Article  ADS  Google Scholar 

  8. K. Balasubramanian, J. Phys. Chem. 94, 7764 (1990)

    Article  Google Scholar 

  9. B. Manna, K.K. Das, J. Phys. Chem. A 102, 9876 (1998)

    Article  Google Scholar 

  10. L. Lou, L. Wang, L.P.F. Chibante, R.T. Laaksonen, P. Nordlander, R.E. Smalley, Chem. Phys. Lett. 94, 8015 (1991)

    Google Scholar 

  11. M. Ebben, J.J. Ter Meulen, Chem. Phys. Lett. 177, 229 (1991)

    Article  ADS  Google Scholar 

  12. U. Meier, S.D. Peyerimhoff, P.J. Bruna, S.P. Karna, F. Grein, Chem. Phys. 130, 31 (1989)

    Article  Google Scholar 

  13. E.F. Archibong, A. St-Amant, Chem. Phys. Lett. 316, 151 (2000)

    Article  ADS  Google Scholar 

  14. B. Manna, K.K. Das, J. Mol. Struct. (Theochem) 467, 135 (1999)

    Article  Google Scholar 

  15. B. Manna, A. Dutta, K.K. Das, J. Mol. Struct. (Theochem) 497, 123 (2000)

    Article  Google Scholar 

  16. G.W. Lemire, G.A. Bishea, S.A. Heidecke, M.D. Morse, J. Chem. Phys. 92, 121 (1990)

    Article  ADS  Google Scholar 

  17. S. Li, R.J. Van Zee, W. Weltner, J. Phys. Chem. 98, 2275 (1994)

    Article  Google Scholar 

  18. S. Li, R.J. Van Zee, W. Weltner, J. Phys. Chem. 97, 11393 (1993)

    Article  Google Scholar 

  19. E.F. Archibong, M. Kandawa-Schulz, E.N. Mvula, Chem. Phys. Lett. 414, 341 (2005)

    Article  ADS  Google Scholar 

  20. N. Seeburrun, P. Gohee, H.H. Abdallah, L. Kanime, E.F. Archibong, P. Ramasami, Chem. Phys. Lett. 472, 35 (2009)

    Article  ADS  Google Scholar 

  21. E.F. Archibong, A. St-Amant, J. Phys. Chem. 106, 5932 (2002)

    Article  Google Scholar 

  22. Y. Qu, W. Ma, X. Bian, H. Tang, W. Tian, J. Mol. Graph. 24, 167 (2005)

    Article  Google Scholar 

  23. L. Guo, H.S. Wu, Z. Jin, Int. J. Mass Spectrom. 240, 149 (2005)

    Article  ADS  Google Scholar 

  24. L. Guo, J. Comput. Mater. Sci. 42, 489 (2008)

    Article  Google Scholar 

  25. E.F. Archibong, D.S. Marynick, J. Mol. Phys. 101, 2785 (2003)

    Article  ADS  Google Scholar 

  26. S. Brownridge, F. Grein, J. Phys. Chem. A 107, 7969 (2003)

    Article  Google Scholar 

  27. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  28. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  29. C. Lai, M. Su, J. Comput. Chem. 29, 2487 (2008)

    Article  Google Scholar 

  30. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 03 (Revision D.01) (Gaussian Inc., Wallingford, 2004)

  31. A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985)

    Article  ADS  Google Scholar 

  32. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  Google Scholar 

  33. L. Guo, J. Mol. Struct. (Theochem) 809, 181 (2007)

    Article  Google Scholar 

  34. A.I. Boldyrev, L.S. Wang, J. Phys. Chem. A 105, 10759 (2001)

    Article  Google Scholar 

  35. G.D. Geske, A.I. Boldyrev, X. Li, L.S. Wang, J. Chem. Phys. 113, 5130 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ponnadurai Ramasami.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gohee, P., Abdallah, H.H., Archibong, E.F. et al. First principles gas phase study of the structures, energetics and spectroscopic parameters of aluminium antimonide, Al x Sb y (x + y = 3, 5), clusters. Eur. Phys. J. D 67, 171 (2013). https://doi.org/10.1140/epjd/e2013-30660-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-30660-2

Keywords

Navigation