Skip to main content
Log in

Systematic theoretical investigation of a positron binding to amino acid molecules using the ab initio multi-component molecular orbital approach

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The feature of positron binding to twenty neutral amino acid molecules with the global minimum (GM) and intramoleculear hydrogen-bonded (HB) structures was analysed using the ab initio multi-component molecular orbital method. All amino acid molecules in the intramoleculear HB structures have positive positron affinity (PA, the binding energy of a positron) values, which means that a positron can be attached to parent molecules, while in the GM structures only three amino acid molecules of Gln, Trp, and His have positive PA values. Analysing the positronic orbitals of each positronic amino acid molecule and the electrostatic potential maps of the corresponding parent molecules, we found that long-range electrostatic interaction is the most crucial role in positron binding to neutral amino acid molecules. The strong correlation is observed between the PA and dipole moment, that is, a polar molecule with a large dipole moment has a large PA value. The critical dipole moment of neutral amino acid molecules for binding a positron was found at about 3.46 Debye. From the systematic analysis of twenty kinds of amino acid molecule, we theoretically confirmed the possibility of positron binding to conformers of amino acid molecules with strong dipole moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. New directions in Antimatter Chemistry and Physics, edited by C.M. Surko, F.A. Gianturco (Kluwer Academic Publishers, The Netherlands, 2001)

  2. G.F. Gribakin, J.A. Young, C.M. Surko, Rev. Mod. Phys. 82, 2557 (2010)

    Article  ADS  Google Scholar 

  3. L. Sokoloff, M. Reivich, C. Kennedy, M.H. Des Rosiers, C.S. Patlak, K.D. Pettigrew, O. Sakurada, M. Shinohara, J. Neurochem. 28, 897 (1977)

    Article  Google Scholar 

  4. J.R. Danielson, J.A. Young, C.M. Surko, J. Phys. B 42, 235203 (2009)

    Article  ADS  Google Scholar 

  5. J.A. Young, C.M. Surko, Phys. Stat. Sol. C 6, 2265 (2009)

    Article  Google Scholar 

  6. J.R. Danielson, J.J. Gosselin, C.M. Surko, Phys. Rev. Lett. 104, 233201 (2010)

    Article  ADS  Google Scholar 

  7. O.H. Crawford, Proc. Phys. Soc. 91, 279 (1967)

    Article  ADS  Google Scholar 

  8. O.H. Crawford, Mol. Phys. 20, 585 (1971)

    Article  ADS  Google Scholar 

  9. H. Chojnacki, K. Strasburger, Mol. Phys. 104, 2273 (2006)

    Article  ADS  Google Scholar 

  10. Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J. Needs, J. Chem. Phys. 131, 134310 (2009)

    Article  ADS  Google Scholar 

  11. R.J. Buenker, H.-P. Liebermann, V. Melnikov, M. Tachikawa, L. Pichl, M. Kimura, J. Phys. Chem. A 109, 5956 (2005)

    Article  Google Scholar 

  12. F.A. Gianturco, J. Franz, R.J. Buenker, H.-P. Liebermann, L. Pichl, J.-M. Rost, M. Tachikawa, M. Kimua, Phys. Rev. A 73, 022705 (2006)

    Article  ADS  Google Scholar 

  13. Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J. Needs, J. Chem. Phys. 135, 054108 (2011)

    Article  ADS  Google Scholar 

  14. K. Strasburger, Struct. Chem. 15, 415 (2004)

    Article  Google Scholar 

  15. M. Tachikawa, R.J. Buenker, M. Kimura, J. Chem. Phys. 119, 5005 (2003)

    Article  ADS  Google Scholar 

  16. M. Tachikawa, Y. Kita, R.J. Buenker, Phys. Chem. Chem. Phys. 13, 2701 (2011)

    Article  Google Scholar 

  17. D. Yu, D.A. Armstrong, A. Rauk, Can. J. Chem. 70, 1762, (1992)

    Article  Google Scholar 

  18. S. Gronert, R.A.J. O’Hair, J. Am. Chem. Soc. 117, 2071 (1995)

    Article  Google Scholar 

  19. M. Tachikawa, H. Sainowo, K. Iguchi, K. Suzuki, J. Chem. Phys. 101, 5925 (1994)

    Article  ADS  Google Scholar 

  20. T. Saito, M. Tachikawa, C. Ohe, K. Iguchi, K. Suzuki, J. Phys. Chem. 100, 6057 (1994)

    Article  Google Scholar 

  21. S.L. Saito, F. Sasaki, J. Chem. Phys. 102, 8040 (1995)

    Article  ADS  Google Scholar 

  22. M. Tachikawa, Chem. Phys. Lett. 350, 269 (2001)

    Article  ADS  Google Scholar 

  23. M.W.J. Bromley, J. Mitroy, Phys. Rev. A 65, 062505 (2002)

    Article  ADS  Google Scholar 

  24. K. Strasburger, J. Chem. Phys. 114, 00615 (2001)

    Article  ADS  Google Scholar 

  25. S. Bubina, L. Adamowicz, J. Chem. Phys. 120, 6051 (2004)

    Article  ADS  Google Scholar 

  26. J. Mitroy, Phys. Rev. A 73, 054502 (2006)

    Article  ADS  Google Scholar 

  27. D.M. Schrader, T. Yoshida, K. Iguchi, Phys. Rev. Lett. 68, 3281 (1992)

    Article  ADS  Google Scholar 

  28. N. Jiang, D.M. Schrader, J. Chem. Phys. 109, 9430 (1998)

    Article  ADS  Google Scholar 

  29. D. Bressanini, M. Mella, G. Morosi, J. Chem. Phys. 108, 4756 (1998)

    Article  ADS  Google Scholar 

  30. M. Mella, M. Casalegno, G. Morosi, J. Chem. Phys. 117, 1450 (2002)

    Article  ADS  Google Scholar 

  31. P.E. Cade, A. Farazdel, J. Chem. Phys. 66, 2598 (1977)

    Article  ADS  Google Scholar 

  32. C.M. Kao, P.E. Cade, J. Chem. Phys. 80, 3234 (1984)

    Article  ADS  Google Scholar 

  33. M. Tachikawa, K. Mori, K. Suzuki, K. Iguchi, Int. J. Quant. Chem. 70, 491 (1998)

    Article  Google Scholar 

  34. M. Tachikawa, K. Mori, H. Nakai, K. Iguchi, Chem. Phys. Lett. 290, 437 (1998)

    Article  ADS  Google Scholar 

  35. M.J. Frisch et al., GAUSSIAN 03, Revision B.05 (Gaussian, Inc., Pittsburgh, 2003)

  36. T.C. Dinadayalane, G.N. Sastry, J. Leszczynski, Int. J. Quant. Chem. 106, 2920 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tachikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyanagi, K., Kita, Y. & Tachikawa, M. Systematic theoretical investigation of a positron binding to amino acid molecules using the ab initio multi-component molecular orbital approach. Eur. Phys. J. D 66, 121 (2012). https://doi.org/10.1140/epjd/e2012-20638-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20638-y

Keywords

Navigation