Appendix A: Seiberg–Witten maps
Let \(a_\mu \) and c be, respectively, an ordinary gauge field and the corresponding ghost field taking values in a Lie algebra in a given irreducible representation. A Seiberg–Witten map which defines a noncommutative gauge field \(A_{\mu }(a)\) and the corresponding noncommutative ghost field C(a, c) in terms of ordinary \(a_\mu \) and c is obtained [13,14,15] by solving, between \(t=0\) and \(t=1\), the following “evolution” problem
$$\begin{aligned}&\frac{d}{dt}A_\mu (a;t)=-\frac{g}{4}\theta ^{ij}\{A_i(a,t),\partial _j A_\mu (a,t)+F_{j\mu }(a,t)\}_{\star _t},\nonumber \\&\quad A_\mu (a;t=0)=a_\mu ,\nonumber \\&\frac{d}{dt}C(a,c;t)=\frac{g}{4}\theta ^{ij}\{\partial _i C(a,c;t), A_j(a,t)\}_{\star _t},\nonumber \\&\quad C(a,c;t=0)=c. \end{aligned}$$
(A.1)
The product \(\star _t\) has been defined in (21) and \(F_{\mu \nu }(a;t)=\partial _\mu A_\nu (a;t)-\partial _\nu A_\mu (a;t)-ig[A_\mu (a;t),A_\nu (a;t)]_{\star _t}\).
The “evolution” problem in (A.1) can be solved [17] by expanding in power of the coupling constant g as befits the definition a field theory in perturbation theory:
$$\begin{aligned} A_\mu (a)= & {} a_\mu +g\, A_\mu ^{(2)}(a,a;t=1)\nonumber \\&+\,g^2\, A_\mu ^{(3)}(a,a,a;t=1)+ O(g^3),\nonumber \\ C(a,c)= & {} c\,+\,g\, C^{(2)}(a,c;t=1)\nonumber \\&+g^2\, C^{(3)}(a,c,a;t=1)+O(g^3), \end{aligned}$$
(A.2)
with
$$\begin{aligned}&A_\mu ^{(2)}(a,a;t)=-\frac{1}{4}\theta ^{ij}\int _0^t ds\,\{a_i,2\partial _j a_\mu -\partial _\mu a_j\}_{\star _s},\nonumber \\&A_\mu ^{(3)}(a,a,a;t)=-\frac{1}{4}\theta ^{ij}\int _0^t ds\Big [\{a_i,2\partial _j A^{(2)}_\mu (a,a;s)\nonumber \\&\quad -2\partial _\mu A^{(2)}_j(a,a;s)\}_{\star _s} +\{A^{(2)}_i(a,a;s),2\partial _j a_\mu -\partial _\mu a_j\}_{\star _s}\nonumber \\&\quad -i\{a_i,[a_j,a_\mu ]_{\star _s}\}_ {\star _s}\Big ],\nonumber \\&C^{(2)}(a,c;t)=\frac{1}{4}\theta ^{ij}\int _0^t ds\,\{\partial _i c,\partial _i a_j\}_{\star _s},\nonumber \\&C^{(3)}(a,c,a;t)=\frac{1}{4}\theta ^{ij}\int _0^t ds\,\Big [\{\partial _i C^{(2)}(a,c;s), a_j\}_{\star _s}\nonumber \\&\quad +\{\partial _i c, A^{(2)}_j(a,a;s) \}_{\star _s}\Big ]. \end{aligned}$$
(A.3)
To obtain \(B_\mu (b)\) and \(Q_\mu (b,q)\) in (3), we replace \(a_\mu \) with \(b_\mu +q_\mu \) in (A.2) and (A.3), and then, expand in powers of \(a_\mu \) and \(b_\mu \) the resulting expressions:
$$\begin{aligned}&A_\mu (b+q)=B_\mu (b)+Q_\mu (b,q),\nonumber \\&B_\mu (b)=b_\mu +g\,\hat{A}^{(2)}_\mu (b,b)+g^2\, \hat{A}^{(3)}_\mu (b,b,b)+ O(g^3),\nonumber \\&\hat{A}^{(2)}_\mu (b,b)=A_\mu ^{(2)}(a=b,a=b;t=1),\nonumber \\&\hat{A}^{(3)}_\mu (b,b,b) =A_\mu ^{(3)}(a=b,a=b,a=b;t=1),\nonumber \\&Q_\mu (b,q)=q_\mu +g\,\big (\hat{A}^{(2)}_\mu (b,q)+\hat{A}^{(2)}_\mu (q,q)\big )\nonumber \\&\quad +g^2\,\big (\hat{A}^{(3)}_\mu (b,b,q)+\hat{A}^{(3)}_\mu (q,q,b)\nonumber \\&\quad +\hat{A}^{(3)}_\mu (q,q,q)\big )+ O(g^3),\nonumber \\&\hat{A}^{(2)}_\mu (b,q)=-\frac{1}{4}\theta ^{ij}\int _0^1 dt\,\Big [ \{b_i,2\partial _j q_\mu -\partial _\mu q_j\}_{\star _t}\nonumber \\&\quad +\{q_i,2\partial _j b_\mu -\partial _\mu b_j\}_{\star _t}\Big ],\nonumber \\&\hat{A}^{(2)}_\mu (q,q)= A_\mu ^{(2)}(a=q,a=q;t=1),\nonumber \\&\hat{A}_\mu ^{(3)}(q,q,b)=-\frac{1}{4}\theta ^{ij}\int _0^1 dt\nonumber \\&\quad \times \Big [\{q_i,2\partial _j \hat{A}^{(2)}_\mu (b,q;t)-2\partial _\mu \hat{A}^{(2)}_j(b,q;t)\}_{\star _t}\nonumber \\&\quad +\{\hat{A}^{(2)}_i(b,q;t),2\partial _j q_\mu -\partial _\mu q_j\}_{\star _t}\nonumber \\&\quad +\{b_i,2\partial _j \hat{A}^{(2)}_\mu (q,q;t)-2\partial _\mu \hat{A}^{(2)}_j(b,q;t)\}_{\star _t}\nonumber \\&\quad +\{\hat{A}^{(2)}_i(q,q;t),2\partial _j b_\mu -\partial _\mu q_j\}_{\star _t}\nonumber \\&\quad -i\{q_i,[q_j,b_\mu ]_{\star _t}\}_{\star _t}-i\{q_i,[b_j,q_\mu ]_{\star _t}\}_{\star _t}\nonumber \\&\quad -i\{b_i,[q_j,q_\mu ]_{\star _t}\}_{\star _t}\Big ],\nonumber \\&\hat{A}_\mu ^{(3)}(b,b,q)=\hat{A}_\mu ^{(3)}(q\rightarrow b,q\rightarrow b,b\rightarrow q),\nonumber \\&\hat{A}_\mu ^{(3)}(a,a,a)=A_\mu ^{(3)}(a=q,a=q,a=q;t=1). \end{aligned}$$
(A.4)
Analogously, \(C(b+q,c)\) is obtained by setting \(a_\mu =b_\mu +q_\mu \) in C(a, c) in (A.2):
$$\begin{aligned}&C(b+q,c)= c + g\,\big (\hat{C}^{(2)}(c,b)+\hat{C}^{(2)}(q,c)\big )\nonumber \\&\quad +g^2\,\big (\hat{C}^{(2)}(c,q,q)+\hat{C}^{(2)}(c,b,q)+\hat{C}^{(3)}(c,b,b)\big )+O(g^3),\nonumber \\&{\hat{C}^{(2)}(b,c;t)=\frac{1}{4}\theta ^{ij}\int _0^t ds\,\{\partial _i c, b_j\}_{\star _s}},\nonumber \\&\hat{C}^{(3)}(c,b,b;t)=\frac{1}{4}\theta ^{ij}\int _0^t ds\,\Big [\{\partial _i \hat{C}^{(2)}(b,c;s), b_j\}_{\star _s}\nonumber \\&\quad +\{\partial _i c, \hat{A}^{(2)}_j(b,b;s) \}_{\star _s}\Big ]. \end{aligned}$$
(A.5)
Since our purpose is to compute \(\varGamma _2[b]\) at one-loop, we shall not need the q-dependent bits of \(C(b+q,c)\):
$$\begin{aligned} C(b,c)= c + g\,\hat{C}^{(2)}(c,b)+g^2\,\hat{C}^{(3)}(c,b,b)+O(g^3), \end{aligned}$$
(A.6)
Assume that \(q_\mu \) and \(b_\mu \) take values in the SU(N) Lie algebra in the fundamental representation. Then \(Q_\mu (b,q)\) in (A.4) can be expressed as the following linear combination:
$$\begin{aligned} Q_\mu (b,q)= Q^{(0)}_\mu (b,q)\mathbb {I}_N\,+\, Q^{a}_\mu (b,q) T^a, \end{aligned}$$
(A.7)
where \(\mathbb {I}_N\) is the \(N\times N\) identity matrix and \(T^a\) are the SU(N) generators. We shall call \(Q^{(0)}_\mu (b,q)\) and \(Q^{a}_\mu (b,q)\) the U(1) component and SU(N) components of the noncommutative field \(Q_\mu (b,q)\).
Let us introduce the following definitions:
$$\begin{aligned}&\hat{A}^{(2)\,0}_\mu (b,q)=\frac{1}{N}\,\mathrm{Tr}\,\hat{A}^{(2)}_\mu (b,q),\;\hat{A}^{(2)\,0}_\mu (q,q)\nonumber \\&\quad =\frac{1}{N}\,\mathrm{Tr}\,\hat{A}^{(2)}_\mu (q,q),\nonumber \\&\hat{A}^{(3)\,0}_\mu (q,q,b)=\frac{1}{N}\,\mathrm{Tr}\,\hat{A}^{(3)}_\mu (q,q,b), \;\hat{A}^{(3)\,0}_\mu (b,q,q)\nonumber \\&\quad =\frac{1}{N}\,\mathrm{Tr}\,\hat{A}^{(2)}_\mu (b,q,q),\nonumber \\&\hat{A}^{(3)\,0}_\mu (q,q,q)=\frac{1}{N}\,\mathrm{Tr}\,\hat{A}^{(2)}_\mu (q,q,q),\nonumber \\&\hat{A}^{(2)\,a}_\mu (b,q)=\,\mathrm{Tr}\,(T^a\hat{A}^{(2)}_\mu (b,q)),\;\hat{A}^{(2)\,a}_\mu (q,q)\nonumber \\&\quad =\,\mathrm{Tr}\,(T^a\hat{A}^{(2)}_\mu (q,q)),\nonumber \\&\hat{A}^{(3)\,a}_\mu (q,q,b)=\,\mathrm{Tr}\,(T^a\hat{A}^{(3)}_\mu (q,q,b)), \;\hat{A}^{(3)\,a}_\mu (b,q,q)\nonumber \\&\quad =\,\mathrm{Tr}\,(T^a\hat{A}^{(2)}_\mu (b,q,q)),\nonumber \\&\hat{A}^{(3)\,a}_\mu (q,q,q)=\,\mathrm{Tr}\,(T^a\hat{A}^{(2)}_\mu (q,q,q)). \end{aligned}$$
(A.8)
The reader should bear in mind the results in (A.4). Then, taking into account (A.7), one conclude that
$$\begin{aligned}&Q^{(0)}_\mu (b,q)=g\,\big (\hat{A}^{(2)\,0}_\mu (b,q)+\hat{A}^{(2)\,0}_\mu (q,q)\big )\nonumber \\&\quad +g^2\,\big (\hat{A}^{(3)\,0}_\mu (b,b,q)+\hat{A}^{(3)}_\mu (q,q,b)\nonumber \\&\quad +\hat{A}^{(3)\,0}_\mu (q,q,q)\big )+O(g^3),\nonumber \\&Q^{a}_\mu (b,q)= q^a_\mu +g\,\big (\hat{A}^{(2)\,a}_\mu (b,q)+\hat{A}^{(2)\,a}_\mu (q,q)\big )\nonumber \\&\quad +g^2\,\big (\hat{A}^{(3)\,a}_\mu (b,b,q)+\hat{A}^{(3)\,a}_\mu (q,q,b)\nonumber \\&\quad +\hat{A}^{(3)\,a}_\mu (q,q,q)\big )+O(g^3). \end{aligned}$$
(A.9)
Let us introduce the field \(\tilde{q}_\mu =\tilde{q}^a_\mu T^a\), where
$$\begin{aligned}&\tilde{q}^a_\mu =Tr(T^a Q_\mu (b,q))=Q^{a}_\mu (b,q)= q^a_\mu +g\,\big (\hat{A}^{(2)\,a}_\mu (b,q)\nonumber \\&\qquad \quad +\hat{A}^{(2)\,a}_\mu (q,q)\big ) +g^2\,\big (\hat{A}^{(3)\,a}_\mu (b,b,q)+\hat{A}^{(3)\,a}_ \mu (q,q,b)\nonumber \\&\qquad \quad +\hat{A}^{(3)\,a}_\mu (q,q,q)\big )+ O(g^3). \end{aligned}$$
(A.10)
The previous expression can be inverted by expanding in powers of g:
$$\begin{aligned} q^a_\mu =\tilde{q}^a_\mu -g\,\big (\hat{A}^{(2)\,a}_\mu (b,\tilde{q})+\hat{A}^{(2)\,a}_\mu (\tilde{q},\tilde{q})\big )+O(g^2), \end{aligned}$$
(A.11)
where
$$\begin{aligned} \hat{A}^{(2)\,a}_\mu (b,\tilde{q})=\hat{A}^{(2)\,a}_\mu (b,q=\tilde{q}),\;\hat{A}^{(2)\,a}_\mu (q=\tilde{q},q=\tilde{q}). \end{aligned}$$
(A.12)
Substituting (A.11) in (A.7) and then expanding in powers of g, one gets
$$\begin{aligned}&Q_\mu (b,q)=\tilde{q}_\mu +\mathbb {I}_N\Big \{g\big [\hat{A}^{(2)\,0}_\mu (b,\tilde{q})+ \hat{A}^{(2)\,0}_\mu (\tilde{q},\tilde{q})\big ]\nonumber \\&\quad +g^2\,\big [\hat{A}^{(3)\,0}_\mu (b,b, \tilde{q})+\hat{A}^{(3)\,a}_\mu (\tilde{q},\tilde{q},b)+ \hat{A}^{(3)\,a}_\mu (\tilde{q},\tilde{q},\tilde{q})\nonumber \\&\quad -\hat{A}^{(2)\,0}_\mu (b,\hat{A}^{(2)\,a}_\sigma (b,\tilde{q})T^a) -\hat{A}^{(2)\,0}_\mu (b,\hat{A}^{(2)\,a}_\sigma (\tilde{q},\tilde{q})T^a)\nonumber \\&\quad -\hat{A}^{(2)\,0}_\mu (\tilde{q},\hat{A}^{(2)\,a}_\sigma (b,\tilde{q})T^a) -\hat{A}^{(2)\,0}_\mu (\hat{A}^{(2)\,a}_\sigma (b,\tilde{q})T^a,\tilde{q})\big ]\Big \},\nonumber \\ \end{aligned}$$
(A.13)
where
$$\begin{aligned}&\hat{A}^{(2)\,0}_\mu (b,\tilde{q})=\hat{A}^{(2)\,0}_\mu (b,q\rightarrow \tilde{q}),\nonumber \\&\quad \hat{A}^{(2)\,0}_\mu (\tilde{q},\tilde{q})=\hat{A}^{(2)\,0}_\mu (q=\tilde{q},q\rightarrow \tilde{q}),\nonumber \\&\hat{A}^{(3)\,0}_\mu (b,b,\tilde{q})=\hat{A}^{(3)\,0}_\mu (b,b,q\rightarrow \tilde{q}),\nonumber \\&\quad \hat{A}^{(3)\,a}_\mu (\tilde{q},\tilde{q},b)=\hat{A}^{(3)\,a}_\mu (q\rightarrow \tilde{q},q\rightarrow \tilde{q},b),\nonumber \\&\hat{A}^{(3)\,0}_\mu (\tilde{q},\tilde{q},\tilde{q})= \hat{A}^{(3)\,0}_\mu (q\rightarrow \tilde{q},q\rightarrow \tilde{q},q\rightarrow \tilde{q}),\nonumber \\&\hat{A}^{(2)\,0}_\mu (b,\hat{A}^{(2)\,a}_\sigma (b,\tilde{q})T^a)= \hat{A}^{(2)\,0}_\mu (b,q_\sigma \rightarrow \hat{A}^{(2)\,a}_\sigma (b,\tilde{q})T^a),\nonumber \\&\hat{A}^{(2)\,0}_\mu (b,\hat{A}^{(2)\,a}_\sigma (\tilde{q},\tilde{q})T^a)= \hat{A}^{(2)\,0}_\mu (b,q_\sigma \rightarrow \hat{A}^{(2)\,a}_\sigma (\tilde{q},\tilde{q})T^a),\nonumber \\&\hat{A}^{(2)\,0}_\mu (\hat{q},\hat{A}^{(2)\,a}_\sigma (b,\tilde{q})T^a) =-\frac{1}{4N}\theta ^{ij} \int _0^1 dt\,\mathrm{Tr}\,\nonumber \\&\quad \times \big ( \{\tilde{q}_i,2\partial _j \hat{A}^{(2)\,a}_\mu (b,\tilde{q})T^a-\partial _\mu \hat{A}^{(2)\,a}_j(b,\tilde{q})T^a\}_{\star _t}\big ),\nonumber \\&\hat{A}^{(2)\,0}_\mu (\hat{q},\hat{A}^{(2)\,a}_\sigma (b,\tilde{q})T^a)\nonumber \\&\quad =-\frac{1}{4N}\theta ^{ij}\int _0^1 dt\,\mathrm{Tr}\, \big ( \{\hat{A}^{(2)\,a}_i(b,\tilde{q})T^a,2\partial _j \tilde{q}_\mu -\partial _\mu \tilde{q}_j\}_{\star _t}\big ).\nonumber \\ \end{aligned}$$
(A.14)
The notation \(q_\mu \rightarrow object\) points out that \(q_\mu \) is to be replaced with object in the corresponding expression in (A.8) and (A.4).
Proceeding in an analogous way, one shows that
$$\begin{aligned}&C(b,c)=\tilde{c}+\mathbb {I}_N\big [g\,\hat{C}^{(2)\,0}(\tilde{c},b)+g^2\, \big (\hat{C}^{(3)\,0}(\tilde{c},b,b)\nonumber \\&\quad + \hat{C}^{(2)\,0}(\hat{C}^{(2)\,a}(\tilde{c},b)T^a,b)\big )\big ]+O(g^3,b^3), \end{aligned}$$
(A.15)
where
$$\begin{aligned}&\tilde{c}= \tilde{c}^a T^a,\;\tilde{c}^a=\,\mathrm{Tr}\,\big (T^a C(b,c)\big ),\nonumber \\&\hat{C}^{(2)\,0}(\tilde{c},b)=\frac{1}{4N}\theta ^{ij}\int _0^1 dt\,\mathrm{Tr}\, \big (\{\partial _i \tilde{c}, b_j\}_{\star _t}\big ),\nonumber \\&C^{(3)\,0}(\tilde{c},b,b)=\frac{1}{4N}\theta ^{ij}\int _0^1 dt\,\mathrm{Tr}\,\Big [\{\partial _i\hat{C}^{(2)}(\tilde{c},b;s), b_j\}_{\star _s}\nonumber \\&\qquad +\{\partial _i \tilde{c}, \hat{A}^{(2)}_j(b,b;s) \}_{\star _s}\Big ],\nonumber \\&\hat{C}^{(2)\,0}(\hat{C}^{(2)\,a}(\tilde{c},b)T^a,b)\nonumber \\&\quad =\frac{1}{4N} \theta ^{ij}\int _0^1 dt\,\mathrm{Tr}\,\big (\{\partial _i\hat{C}^{(2)\,a}(\tilde{c},b)T^a , b_j\}_{\star _t}\big ),\nonumber \\&\hat{C}^{(2)\,a}(\tilde{c},b)=\frac{1}{4}\theta ^{ij}\int _0^1 dt\,\mathrm{Tr}\,\big (T^a\{\partial _i \tilde{c}, b_j\}_ {\star _t}\big ). \end{aligned}$$
(A.16)
Let us finally recall that (A.13) and (A.15) are needed to go from (11) to (17).
Appendix B: Computing relevant integrals in D dimensions for Euclidean signature
Here for normalised D dimensional integral we shall use the following shorthand notations \(\int \frac{d^D k}{(2\pi )^D}\equiv \int \). Now we categorise integrals by the power of \((k\tilde{p})\) factor in the denominator. First we have four integrals with power zero:
$$\begin{aligned} I_1= & {} \int \,\frac{e^{\pm i k\tilde{p}}}{k^2},\quad I_2=\int \,\frac{e^{i k\tilde{p}}}{k^2(k+p)^2}, \nonumber \\ I_3= & {} \int \,\frac{(2k+p)^\mu (2k+p)^\nu }{k^2(k+p)^2}e^{i k\tilde{p}},\nonumber \\&\quad I_4=\int \,\frac{(2k+p)^\mu (2k+p)^\nu }{k^2(k+p)^2}. \end{aligned}$$
(B.17)
Then we have six with power one:
$$\begin{aligned} I_5=\int \,\frac{1}{k^2(k\tilde{p})},\quad I_6=\int \, \frac{k^\mu }{k^2(k\tilde{p})},\quad I_7=\int \, \frac{k^\mu k^\nu }{k^2(k\tilde{p})}, \end{aligned}$$
(B.18)
$$\begin{aligned}&I_8=\int \,\frac{e^{i k\tilde{p}}+e^{-i k\tilde{p}}}{k^2(k\tilde{p})},\nonumber \\&I_9=\int \,\frac{k^\mu \big (e^{i k\tilde{p}}+e^{-i k\tilde{p}}\big )}{k^2(k\tilde{p})},\nonumber \\&I_{10}=\int \,\frac{k^\mu k^\nu \big (e^{i k\tilde{p}}+e^{-i k\tilde{p}}\big )}{k^2(k\tilde{p})}, \end{aligned}$$
(B.19)
and finally comes seven with power two:
$$\begin{aligned}&I_{11}=\int \,\frac{1}{k^2(k\tilde{p})^2},\quad I_{12}=\int \,\frac{k^\mu }{k^2(k\tilde{p})^2},\nonumber \\&I_{13}=\int \,\frac{k^\mu k^\nu }{k^2(k\tilde{p})^2}, \end{aligned}$$
(B.20)
$$\begin{aligned}&I_{14}=\int \,\frac{1}{k^2(k\tilde{p})^2}\big (e^{i k\tilde{p}}+e^{-i k\tilde{p}}\big ),\nonumber \\&I_{15}=\int \,\frac{k^\mu }{k^2(k\tilde{p})^2}\big (e^{i k\tilde{p}}+e^{-i k\tilde{p}}\big ), \end{aligned}$$
(B.21)
$$\begin{aligned}&I_{16}=\int \,\frac{k^\mu k^\nu }{k^2(k\tilde{p})^2}\big (e^{i k\tilde{p}}+e^{-i k\tilde{p}}\big ),\nonumber \\&I_{17}=\int \frac{k^\mu k^\nu k^\rho }{k^2(k\tilde{p})^2}\big (e^{i k\tilde{p}}+e^{-i k\tilde{p}}\big ). \end{aligned}$$
(B.22)
Using \(k\rightarrow -k\) trick we can find immediately that: \(I_5=I_7=I_{10}=I_{12}=I_{15}=I_{17}=0\). We can also transform \(k\rightarrow -k-p\) and show that
$$\begin{aligned} I_3= & {} \int \,\frac{2k^\mu k^\nu +k^\mu p^\nu }{k^2(k+p)^2}(e^{i k\tilde{p}}+e^{-i k\tilde{p}}),\nonumber \\ I_4= & {} 2\int \,\frac{2k^\mu k^\nu +k^\mu p^\nu }{k^2(k+p)^2}. \end{aligned}$$
(B.23)
From history we know the \(I_{1,2}\) integrals:
$$\begin{aligned}&I_1=\frac{1}{(4\pi )^{\frac{D}{2}}}\left( \frac{\tilde{p}^2}{4}\right) ^{1-\frac{D}{2}}\varGamma \left( \frac{D}{2}-1\right) , \end{aligned}$$
(B.24)
$$\begin{aligned}&I_2=\frac{2}{(4\pi )^{\frac{D}{2}}}\int \limits _0^1 dx \big (x(1-x)p^2\big )^{\frac{D}{4}-1}\left( \frac{\tilde{p}^2}{4}\right) ^{1-\frac{D}{4}}\nonumber \\&\quad \times K_{\frac{D}{2}-2} \left[ \sqrt{x(1-x)p^2\tilde{p}^2}\right] . \end{aligned}$$
(B.25)
Integral \(I_3\) is a standard nonplanar integral, on which we apply the decomposition
$$\begin{aligned} I_3= \eta ^{\mu \nu } p^2\cdot I_{3_1}+(p^\mu p^\nu -\eta ^{\mu \nu } p^2)\cdot I_{3_2}+\tilde{p}^\mu \tilde{p}^\nu \cdot I_{3_3}, \end{aligned}$$
(B.26)
and after integration over parameter \(\alpha \) obtain
$$\begin{aligned} I_{3_1}= & {} \frac{2}{\tilde{p}^2} I_1, \nonumber \\ I_{3_2}= & {} \frac{2}{(4\pi )^{\frac{D}{2}}}\int \limits _0^1 dx (1-2x)^2\big (x(1-x)p^2\big )^{\frac{D}{4}-1}\left( \frac{\tilde{p}^2}{4}\right) ^{1-\frac{D}{4}}\nonumber \\&\quad \times K_{\frac{D}{2}-2}\left[ \sqrt{x(1-x)p^2\tilde{p}^2}\right] , \nonumber \\ I_{3_3}= & {} -\frac{2}{(4\pi )^{\frac{D}{2}}}\int \limits _0^1 dx \big (x(1-x)p^2\big )^{\frac{D}{4}}\nonumber \\&\quad \times \left( \frac{\tilde{p}^2}{4}\right) ^{-\frac{D}{4}} K_{\frac{D}{2}}\left[ \sqrt{x(1-x)p^2\tilde{p}^2}\right] . \end{aligned}$$
(B.27)
Here \(I_{3_3}\) can be re-expressed via \(I_{3_1}\) and \(K_{\frac{D}{2}-2}\left[ \sqrt{x(1-x)p^2\tilde{p}^2}\right] \) as follows
$$\begin{aligned} I_{3_3}= & {} (2-D)I_{3_1}+\frac{2}{(4\pi )^{\frac{D}{2}}}\frac{p^2}{\tilde{p}^2} \int \limits _0^1 dx \big (4(D-1)x^2-D\big )\nonumber \\&\times \big (x(1-x)p^2\big )^{\frac{D}{4}-1}\left( \frac{\tilde{p}^2}{4}\right) ^{1-\frac{D}{4}}\nonumber \\&\times K_{\frac{D}{2}-2}\left[ \sqrt{x(1-x)p^2\tilde{p}^2}\right] . \end{aligned}$$
(B.28)
Integral \(I_4\) is a standard planar integral and we have the standard tensor reduction result:
$$\begin{aligned} I_4= & {} \frac{1}{(4\pi )^{\frac{D}{2}}}\big (\eta ^{\mu \nu }p^2 - p^\mu p^\nu \big )(p^2)^{\frac{D}{2}-2}\nonumber \\&\times B\left( \frac{D}{2}-1,\frac{D}{2}-1\right) \frac{\varGamma \left( 2-\frac{D}{2}\right) }{1-D}. \end{aligned}$$
(B.29)
Trivially one can see that \(I_6=I_{13}\;\tilde{p}_\nu ,\;\, I_9=I_{16}\;\tilde{p}_\nu \), and integrals \(I_{13}\) and \(I_{16}\) can be solved by an NC tensor reduction. Since the only relevant momentum in these two integrals is \(\tilde{p}^\mu \), we can prescribe the following simple tensor structures:
$$\begin{aligned} I_{13}= & {} \eta ^{\mu \nu }\tilde{p}^2A_{13}+\tilde{p}^\mu \tilde{p}^\nu B_{13}, \nonumber \\ I_{16}= & {} \eta ^{\mu \nu }\tilde{p}^2A_{16}+\tilde{p}^\mu \tilde{p}^\nu B_{16}, \end{aligned}$$
(B.30)
which after contraction with \(\eta _{\mu \nu }\) and \(\tilde{p}_\mu \tilde{p}_\nu \) gives:
$$\begin{aligned} I_{13}=0=I_6,\;\, I_{16}=\frac{2}{ \tilde{p}^4} \frac{\eta ^{\mu \nu }\tilde{p}^2-\tilde{p}^\mu \tilde{p}^\nu \cdot D}{1-D}I_1 . \end{aligned}$$
(B.31)
We are now left with \(I_{11}\) and \(I_{14}\), and they are not as easy as they seem to be. Priorly we evaluated them in [52] as the following sum denoted as \(T_{-2}\):
$$\begin{aligned} T_{-2}=2I_{11}-I_{14}. \end{aligned}$$
(B.32)
Two methods were used to calculate \(T_{-2}\) explicitly, one is based on Grozin parametrization [60] and the other contour integral parametrization. We encounter immediately problem with the second method because the poles at \(x=0\) are second order in \(I_{11}\) and \(I_{14}\) while first order in \(T_{-2}\), which means that we can not define the principle value around this pole for \(I_{11}\) or \(I_{14}\). This leaves only the Grozin parametrization producing:
$$\begin{aligned} I_{11}= & {} -\int \limits _0^\infty dy\, y\int \limits _0^\infty d\alpha \, \alpha ^2 e^{-\alpha (k^2+i y k\tilde{p})}\nonumber \\= & {} \frac{-1}{(4\pi )^{\frac{D}{2}}} \left( \frac{\tilde{p}^2}{4}\right) ^{\frac{D}{2}-3}\varGamma \left( 3-\frac{D}{2}\right) B\left( D-4, 4-D\right) =0,\nonumber \\ \end{aligned}$$
(B.33)
$$\begin{aligned} I_{14}= & {} -2\int \limits _0^\infty dy\, y\int \limits _0^\infty d\alpha \, \alpha ^2\int e^{-\alpha (k^2+i y k\tilde{p})+i k\tilde{p}}\nonumber \\= & {} \frac{1}{(4\pi )^{\frac{D}{2}}}\left( \frac{\tilde{p}^2}{4}\right) ^{1-\frac{D}{2}}\frac{\varGamma \left( \frac{D}{2}-2\right) }{3-D}. \end{aligned}$$
(B.34)
Appendix B.1: Discussing the UV divergent tadpole integral \(I_{14}\)
In our recent computation a new type of tadpole integral, which is UV divergent at the \(D\rightarrow 4-\epsilon \) limit occurred repeatedly. Here we provide an account of its evaluation. This new tadpole \(I_{14}\), in [52] denoted as \(T_{-2}\), bears a very simple form
$$\begin{aligned} I_{14}\equiv -T_{-2}=\int \frac{d^D \ell }{(2\pi )^D}\,\frac{f_{\star _2}(\ell ,p)^2}{\ell ^2}. \end{aligned}$$
(B.35)
On the other hand, it turns out that \(T_{-2}\) is not quite easy to evaluate. Two usual regularization methods used before, turning tadpole to bubble or using the n-nested zero regulator respectively, did not function here. The first one produces divergent special function integrals while the second contains unfavourable powers of the regulator. The parametrization discussed in the Sect. 1 of this note offers us an alternative way to handle this problem, using this parametrization we can express \(T_{-2}\) as
$$\begin{aligned} T_{-2}= & {} \int \frac{d^{D-1} \ell }{(2\pi )^{D-1}}\,\int \limits _{-\infty }^{+\infty }\, \frac{dx}{2\pi }\frac{1}{\ell ^2+x^2}\frac{4\sin ^2\frac{|\tilde{p}|}{2}x}{x^2\tilde{p}^2}\nonumber \\= & {} \frac{1}{\tilde{p}^2}\int \frac{d^{D-1} \ell }{(2\pi )^{D-1}}\,\left( -\frac{1}{|\ell |^3}+\frac{2|\tilde{p}|}{|\ell |^2}+\frac{e^{-|\ell ||\tilde{p}|}}{|\ell |^3}\right) . \nonumber \\ \end{aligned}$$
(B.36)
Here we can only neglect the second term in the last parenthesis because the first and last exceed the minimal power of \(|\ell |\) for massless tadpole to vanish in the dimensional regularization prescription. One can introduce one more integrand y to make he first plus the last terms into one:
$$\begin{aligned} T_{-2}= & {} \frac{1}{\tilde{p}^2}\int \frac{d^{D-1} \ell }{(2\pi )^{D-1}}\,\left( -\frac{1}{|\ell |^3}+\frac{e^{-|\ell ||\tilde{p}|}}{|\ell |^3}\right) \nonumber \\= & {} \frac{1}{(4\pi )^{\frac{D}{2}}}\left( \frac{\tilde{p}^2}{4}\right) ^{1-\frac{D}{2}}\frac{\varGamma \left( \frac{D}{2}-2\right) }{D-3}. \end{aligned}$$
(B.37)
A familiar pattern emerges once we compute the \(D\rightarrow 4+2\epsilon \) limit
$$\begin{aligned} T_{-2}=\frac{-4}{(4\pi )^2\tilde{p}^2}\left( -\frac{1}{\epsilon }+Ln\,\tilde{p}^2+Ln(\pi \mu ^2)+\varGamma _E+2\right) +{\mathscr {O}}(\epsilon ). \end{aligned}$$
(B.38)
Here we see the logarithmic UV/IR mixing taking place via a single integral.
Appendix B.2: The \(D\rightarrow 4+2\epsilon \) limit of all evaluated integrals
$$\begin{aligned} I_1= & {} \frac{1}{4\pi ^2}\frac{1}{\tilde{p}^2}+{\mathscr {O}}(\epsilon ), \end{aligned}$$
(B.39)
$$\begin{aligned} I_2= & {} \frac{1}{8\pi ^2}\int \limits _0^1 dx\, K_0\left[ \sqrt{x(1-x)p^2\tilde{p}^2}\right] +{\mathscr {O}}(\epsilon ), \end{aligned}$$
(B.40)
$$\begin{aligned} I_3= & {} \frac{1}{8\pi ^2}\Bigg (\eta ^{\mu \nu } \frac{4}{\tilde{p}^2} +\big (p^\mu p^\nu -\eta ^{\mu \nu } p^2\big )\nonumber \\&\times \int \limits _0^1 dx (1-2x)^2K_0\left[ \sqrt{x(1-x)p^2\tilde{p}^2}\right] \Bigg ) \nonumber \\&-\frac{1}{\pi ^2}\frac{\tilde{p}^\mu \tilde{p}^\nu }{\tilde{p}^4} +\frac{1}{2\pi ^2}\frac{\tilde{p}^\mu \tilde{p}^\nu }{\tilde{p}^2}\int \limits _0^1 dx (3x^2-1)p^2\nonumber \\&\times K_0\left[ \sqrt{x(1-x)p^2\tilde{p}^2}\right] +{\mathscr {O}}(\epsilon ), \end{aligned}$$
(B.41)
$$\begin{aligned} I_4= & {} \frac{1}{48\pi ^2}\big (\eta ^{\mu \nu }p^2 - p^\mu p^\nu \big )\left( \frac{1}{\epsilon }+\varGamma _E+Ln\frac{p^2}{4\pi \mu ^2}-\frac{8}{3}\right) \nonumber \\&+{\mathscr {O}}(\epsilon ), \end{aligned}$$
(B.42)
$$\begin{aligned} I_5= & {} I_6=I_7=I_8=I_{10}=I_{11}=I_{12}=I_{13}\nonumber \\= & {} I_{15}=I_{17}=0, \end{aligned}$$
(B.43)
$$\begin{aligned} I_9= & {} \frac{1}{2\pi ^2}\frac{\tilde{p}^\mu }{\tilde{p}^4}+{\mathscr {O}}(\epsilon ), \end{aligned}$$
(B.44)
$$\begin{aligned} I_{14}= & {} -T_{-2}=\frac{1}{(2\pi )^2}\frac{1}{\tilde{p}^2}\Bigg (-\frac{1}{\epsilon }+Ln\,\tilde{p}^2+Ln(\pi \mu ^2)\nonumber \\&+\varGamma _E+2\Bigg )+{\mathscr {O}}(\epsilon ), \end{aligned}$$
(B.45)
$$\begin{aligned} I_{16}= & {} -\frac{1}{6\pi ^2}\frac{1}{\tilde{p}^6}\big (\eta ^{\mu \nu }\tilde{p}^2-4\tilde{p}^\mu \tilde{p}^\nu \big )+{\mathscr {O}}(\epsilon ). \end{aligned}$$
(B.46)
Appendix C: Rederiving the noncommutative IR divergence for the two-point function of U(N) in the fundamental representation
In this Appendix we shall apply the techniques displayed in Sects. 2 and 3 to the U(N) case in the fundamental representation and thus rederive the result in Eq. (61). Actually, the techniques in Sects. 2 and 3 have been previously applied in Ref. [54] to show perturbatively the duality of noncommutative U(N) gauge theory under the Seiberg–Witten map.
Let us assume that \(a_\mu \), \(b_\mu \) and \(q_\mu \) in Sect. 2 – see Eq. (2), in particular – take values in the Lie algebra of U(N) in the fundamental representation. Then, \(A_\mu (b+q)\), \(B_\mu (b)\) and \(Q_\mu (b,q)\) – see Eq. (3) – as defined by the Seiberg–Witten map in Appendix A also take values in the Lie algebra of U(N) in the fundamental representation – notice that this not so for SU(N). Analogously, let us assume that c, \(\bar{C}\), F in Sect. 2 – see Eq. (7), in particular – are elements of the Lie algebra of U(N) in the fundamental representation. Then, \(C(b+q,c)\) as defined by the Seiberg–Witten map in Appendix A is an element of U(N) in the fundamental representation. It is not difficult to convince oneself one can proceed as in Sects. 2 and 3 – by adapting the formulae in those sections to the U(N) case at hand and with the help of the results in ref. [54] – and compute the off-shell two-point contribution to effective action – let us call it \(\varGamma ^\mathrm{U(N)}_{ 2}[b]\) – of the DeWitt effective action. The \(\varGamma ^\mathrm{U(N)}_{ 2}[b]\) reads
$$\begin{aligned}&\varGamma ^\mathrm{U(N)}_2[b]=g^2\int \frac{d^4 p}{(2\pi )^4} \,[\mathrm{Tr}\,b_{\mu }(p)][\mathrm{Tr}\, b_\nu (-p)] \frac{2}{\pi ^2}\frac{\tilde{p}^\mu \tilde{p}^\nu }{(\tilde{p}^2)^2}\nonumber \\&\quad +\frac{g^2}{16 \pi ^2}\int \frac{d^4 p}{(2\pi )^4} \,[\mathrm{Tr}\,b_{\mu }(p)][\mathrm{Tr}\,b_\nu (-p)]\nonumber \\&\quad \times \big [(p^2\eta ^{\mu \nu }-p^\mu p^\nu )\, \frac{11}{3}\,Ln (p^2\tilde{p}^2) +\,\varSigma _{\mu \nu }(p,\tilde{p})\big ]\nonumber \\&\quad +\frac{g^2}{16 \pi ^2}N\int \frac{d^4 p}{(2\pi )^4} \, \mathrm{Tr}\,\big [b_{\mu }(p)\big (p^2\eta ^{\mu \nu }-p^\mu p^\nu \big )b_\nu (-p)\big ]\nonumber \\&\quad \times \Big \{-\frac{11}{3}\Big (\frac{1}{\epsilon }+ Ln\frac{p^2}{4\pi \mu ^2}\Big )+\frac{67}{144\pi ^2}+ \mathcal{O}(D-4)\Big \}\nonumber \\&\quad +\;\varGamma ^\mathrm{U(N)}_2[b]^ \mathrm{(eom0)}+\;(2\text {-loop order}), \end{aligned}$$
(C.47)
where \(\varGamma ^\mathrm{U(N)}_2[b]^\mathrm{(eom0)}\), which obviously vanishes upon imposing the equation of motion, contains all the contributions on which integral
$$\begin{aligned} \int d^4 x\,q^a_{\mu }(x)\frac{\delta \varGamma ^\mathrm{U(N)}[b]}{\delta b^a_{\mu }(x)}, \end{aligned}$$
in (4), is involved. The \(\varGamma ^\mathrm{U(N)}_2[b]^\mathrm{(eom0)}\) is not physically relevant for it vanishes on-shell, while \(\varSigma _{\mu \nu }(p,\tilde{p})\) is a function such that it remains finite as \(\tilde{p}\) goes to zero.
It is apparent that if, in \(\varGamma ^\mathrm{U(N)}_2[b]\) above, we replace \(b_\mu \) with \(b^{\bot }_\mu \) taking values in the Lie algebra of U(N) in the fundamental representation and satisfying the equations in (29), we will obtain Eq. (61) as expected. Hence, in the U(N) in the fundamental representation the colour structure of the noncommutative IR divergence of the one-loop two-point function is \([\mathrm{Tr}\,b^{\bot }_\mu (p)][\mathrm{Tr}\,b^{\bot }_\mu (-p)]\), i.e, it is purely U(1), whereas in the SU(N) case is quite different: \(\mathrm{Tr}\,[b^{\bot }_\mu (p) b^{\bot }_\mu (-p)]\), i.e. there is only one \(\mathrm{Tr}\).
The \(\varGamma ^\mathrm{U(N)}_2[b]\) in Eq. (C.47) is the counterpart of \(\varGamma _2[b]\) in Eq. (23). The fact that the result in Eq. (23) has a notably different tensor structure from that in Eq. (C.47) has to do with the fact in the U(N) case the change of integration variables in Eq. (15) removes from the classical action and the gauge-fixing terms all the \(\theta \)-dependence coming from the Seiberg–Witten map for \(Q_\mu (b,q)\) and C(b, q). This is not so in the SU(N) case, for in this case neither \(Q_\mu (b,q)\) nor C(b, q) belong to the Lie algebra of SU(N). On the other hand, both \(Q_\mu (b,q)\) and C(b, q) belong to the Lie algebra of U(N) in the fundamental representation if \(b_\mu \), \(q_\mu \) and c take values in the Lie algebra of U(N) in the fundamental representation. The gauge dependent contributions in \(\varGamma ^\mathrm{U(N)}_2[b]\) and \(\varGamma _2[b]\) are removed by going on-shell as required by DeWitt’s effective action formalism. This procedure yields Eqs. (61) and (62) for U(N) and SU(N), respectively, with tensor structures – and color structures – quite different.