Skip to main content
Log in

Scalar field propagation in the ϕ 4 κ-Minkowski model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this article we use the noncommutative (NC) κ-Minkowski ϕ 4 model based on the κ-deformed star product, (★ h ). The action is modified by expanding up to linear order in the κ-deformation parameter a, producing an effective model on commutative spacetime. For the computation of the tadpole diagram contributions to the scalar field propagation/self-energy, we anticipate that statistics on the κ-Minkowski is specifically κ-deformed. Thus our prescription in fact represents hybrid approach between standard quantum field theory (QFT) and NCQFT on the κ-deformed Minkowski spacetime, resulting in a κ-effective model. The propagation is analyzed in the framework of the two-point Green’s function for low, intermediate, and for the Planckian propagation energies, respectively. Semiclassical/hybrid behavior of the first order quantum correction do show up due to the κ-deformed momentum conservation law. For low energies, the dependence of the tadpole contribution on the deformation parameter a drops out completely, while for Planckian energies, it tends to a fixed finite value. The mass term of the scalar field is shifted and these shifts are very different at different propagation energies. At the Planck-ian energies we obtain the direction dependent κ-modified dispersion relations. Thus our κ-effective model for the massive scalar field shows a birefringence effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lukierski, H. Ruegg, A. Nowicki and V.N. Tolstoi, Q deformation of Poincaré algebra, Phys. Lett. B 264 (1991) 331 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  2. J. Lukierski, A. Nowicki and H. Ruegg, New quantum Poincaré algebra and k deformed field theory, Phys. Lett. B 293 (1992) 344 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. S. Majid and H. Ruegg, Bicrossproduct structure of kappa Poincaré group and noncommutative geometry, Phys. Lett. B 334 (1994) 348 [hep-th/9405107] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. T. Govindarajan, K.S. Gupta, E. Harikumar, S. Meljanac and D. Meljanac, Deformed Oscillator Algebras and QFT in κ-Minkowski Spacetime, Phys. Rev. D 80 (2009) 025014 [arXiv:0903.2355] [INSPIRE].

    ADS  Google Scholar 

  5. C. Young and R. Zegers, Covariant particle statistics and intertwiners of the κ-deformed Poincaré algebra, Nucl. Phys. B 797 (2008) 537 [arXiv:0711.2206] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Arzano and A. Marciano, Fock space, quantum fields and κ-Poincaré symmetries, Phys. Rev. D 76 (2007) 125005 [arXiv:0707.1329] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. M. Daszkiewicz, J. Lukierski and M. Woronowicz, Towards quantum noncommutative κ-deformed field theory, Phys. Rev. D 77 (2008) 105007 [arXiv:0708.1561] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. V. Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985)1060 [Sov. Math. Dokl. 32 (1985) 254] [INSPIRE].

    MathSciNet  Google Scholar 

  9. V.G. Drinfel’d, Quasi-Hopf algebras, Algebra i Analiz 1 (1989) 114 [Leningrad Math. J. 1 (1990)1419.

  10. A. Borowiec, J. Lukierski and V. Tolstoy, Jordanian quantum deformations of D = 4 Anti-de-Sitter and Poincaré superalgebras, Eur. Phys. J. C 44 (2005) 139 [hep-th/0412131] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Borowiec, J. Lukierski and V. Tolstoy, Jordanian twist quantization of D = 4 Lorentz and Poincaré algebras and D = 3 contraction limit, Eur. Phys. J. C 48 (2006) 633 [hep-th/0604146] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Balachandran, A. Pinzul and B. Qureshi, Twisted Poincaré Invariant Quantum Field Theories, Phys. Rev. D 77 (2008) 025021 [arXiv:0708.1779] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. J.-G. Bu, H.-C. Kim, Y. Lee, C.H. Vac and J.H. Yee, κ-deformed Spacetime From Twist, Phys. Lett. B 665 (2008) 95 [hep-th/0611175] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. T. Govindarajan, K.S. Gupta, E. Harikumar, S. Meljanac and D. Meljanac, Twisted statistics in κ-Minkowski spacetime, Phys. Rev. D 77 (2008) 105010 [arXiv:0802.1576] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. A. Borowiec and A. Pachol, κ-Minkowski spacetime as the result of Jordanian twist deformation, Phys. Rev. D 79 (2009) 045012 [arXiv:0812.0576] [INSPIRE].

    ADS  Google Scholar 

  16. J.-G. Bu, J.H. Yee and H.-C. Kim, Differential Structure on κ-Minkowski Spacetime Realized as Module of Twisted Weyl Algebra, Phys. Lett. B 679 (2009) 486 [arXiv:0903.0040] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. L. Freidel, J. Kowalski-Glikman and S. Nowak, From noncommutative κ-Minkowski to Minkowski space-time, Phys. Lett. B 648 (2007) 70 [hep-th/0612170] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. J. Kowalski-Glikman and A. Walkus, Star product and interacting fields on κ-Minkowski space, Mod. Phys. Lett. A 24 (2009) 2243 [arXiv:0904.4036] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. P. Kosinski, J. Lukierski, P. Maslanka and J. Sobczyk, The Classical basis for κ deformed Poincaré (super)algebra and the second κ deformed supersymmetric Casimir, Mod. Phys. Lett. A 10 (1995) 2599 [hep-th/9412114] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. A. Borowiec and A. Pachol, Classical basis for κ-Poincaré algebra and doubly special relativity theories, J. Phys. A 43 (2010) 045203 [arXiv:0903.5251] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. S. Meljanac and M. Stojic, New realizations of Lie algebra κ-deformed Euclidean space, Eur. Phys. J. C 47 (2006) 531 [hep-th/0605133] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Meljanac, A. Samsarov, M. Stojic and K. Gupta, κ-Minkowski space-time and the star product realizations, Eur. Phys. J. C 53 (2008) 295 [arXiv:0705.2471] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Kresic-Juric, S. Meljanac and M. Stojic, Covariant realizations of κ-deformed space, Eur. Phys. J. C 51 (2007) 229 [hep-th/0702215] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. S. Meljanac and A. Samsarov, Scalar field theory on κ-Minkowski spacetime and translation and Lorentz invariance, Int. J. Mod. Phys. A 26 (2011) 1439 [arXiv:1007.3943] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. H. Grosse and M. Wohlgenannt, On κ-deformation and UV/IR mixing, Nucl. Phys. B 748 (2006) 473 [hep-th/0507030] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Horvat and J. Trampetic, Constraining noncommutative field theories with holography, JHEP 01 (2011) 112 [arXiv:1009.2933] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. A.G. Cohen, D.B. Kaplan and A.E. Nelson, Effective field theory, black holes and the cosmological constant, Phys. Rev. Lett. 82 (1999) 4971 [hep-th/9803132] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. R. Horvat, D. Kekez, P. Schupp, J. Trampetic and J. You, Photon-neutrino interaction in theta-exact covariant noncommutative field theory, Phys. Rev. D 84 (2011) 045004 [arXiv:1103.3383] [INSPIRE].

    ADS  Google Scholar 

  29. R. Horvat, A. Ilakovac, J. Trampetic and J. You, On UV/IR mixing in noncommutative gauge field theories, accepted for publication in JHEP, arXiv:1109.2485 [INSPIRE].

  30. R.J. Szabo, Quantum Gravity, Field Theory and Signatures of Noncommutative Spacetime, Gen. Rel. Grav. 42 (2010) 1 [arXiv:0906.2913] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  31. P. Kosinski, J. Lukierski and P. Maslanka, Local D = 4 field theory on kappa deformed Minkowski space, Phys. Rev. D 62 (2000) 025004 [hep-th/9902037] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. G. Amelino-Camelia and M. Arzano, Coproduct and star product in field theories on Lie algebra noncommutative space-times, Phys. Rev. D 65 (2002) 084044 [hep-th/0105120] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. M. Maggiore, A Generalized uncertainty principle in quantum gravity, Phys. Lett. B 304 (1993) 65 [hep-th/9301067] [INSPIRE].

    ADS  Google Scholar 

  34. S.B. Giddings, D.J. Gross and A. Maharana, Gravitational effects in ultrahigh-energy string scattering, Phys. Rev. D 77 (2008) 046001 [arXiv:0705.1816] [INSPIRE].

    ADS  Google Scholar 

  35. J. Kowalski-Glikman and S. Nowak, Doubly special relativity theories as different bases of kappa Poincaré algebra, Phys. Lett. B 539 (2002) 126 [hep-th/0203040] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. J. Kowalski-Glikman and S. Nowak, Noncommutative space-time of doubly special relativity theories, Int. J. Mod. Phys. D 12 (2003) 299 [hep-th/0204245] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. M. Dimitrijević, L. Jonke, L. Möller, E. Tsouchnika, J. Wess and M. Wohlgenannt, Deformed field theory on kappa space-time, Eur. Phys. J. C 31 (2003) 129 [hep-th/0307149] [INSPIRE].

    ADS  Google Scholar 

  38. A. Borowiec and A. Pachol, κ-Minkowski spacetimes and DSR algebras: Fresh look and old problems, SIGMA 6 (2010) 086 [arXiv:1005.4429] [INSPIRE].

    MathSciNet  Google Scholar 

  39. S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge U.K. (1995).

    Book  MATH  Google Scholar 

  40. A. Balachandran, T. Govindarajan, G. Mangano, A. Pinzul, B. Qureshi and S. Vaidya, Statistics and UV-IR mixing with twisted Poincaré invariance, Phys. Rev. D 75 (2007) 045009 [hep-th/0608179] [INSPIRE].

    ADS  Google Scholar 

  41. A. Balachandran, A. Joseph and P. Padmanabhan, Non-Pauli Transitions From Spacetime Noncommutativity, Phys. Rev. Lett. 105 (2010) 051601 [arXiv:1003.2250] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. A. Balachandran and P. Padmanabhan, Non-Pauli Effects from Noncommutative Spacetimes, JHEP 12 (2010) 001 [arXiv:1006.1185] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. V.G. Drinfeld, Quantum groups, Proceedings of the ICM, Berkeley U.S.A. (1986), American Mathematical Society, Rhode Island U.S.A. (1987).

  44. L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebra i Analiz. 1 (1989) 178 [Leningrad Math. J. 1 (1990) 193].

  45. S. Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Int. J. Mod. Phys. A 5 (1990) 1 [INSPIRE].

  46. J. Kowalski-Glikman, de Sitter space as an arena for doubly special relativity, Phys. Lett. B 547 (2002) 291 [hep-th/0207279] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  47. J. Lukierski and A. Nowicki, Nonlinear and quantum origin of doubly infinite family of modified addition laws for four momenta, Czech. J. Phys. 52 (2002) 1261 [hep-th/0209017] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. P. Kosinski, J. Lukierski and P. Maslanka, Local field theory on kappa Minkowski space, star products and noncommutative translations, Czech. J. Phys. 50 (2000) 1283 [hep-th/0009120] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. A. Agostini, G. Amelino-Camelia, M. Arzano, A. Marciano and R.A. Tacchi, Generalizing the Noether theorem for Hopf-algebra spacetime symmetries, Mod. Phys. Lett. A 22 (2007) 1779 [hep-th/0607221] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  50. P. Kosinski, P. Maslanka, J. Lukierski and A. Sitarz, Generalized kappa deformations and deformed relativistic scalar fields on noncommutative Minkowski space, in the proceedings of Topics in mathematical physics, general relativity and cosmology, Mexico City Mexico (2002), World Scientific, Singapore (2003) [hep-th/0307038] [INSPIRE].

    Google Scholar 

  51. Roberto Casalbuoni, Advanced Quantum Field Theory, lezioni date all’Universita’ di Firenze, Dipartimento di Fisica, Firence Italy (2004/2005).

  52. S.A. Abel, J. Jaeckel, V.V. Khoze and A. Ringwald, Vacuum Birefringence as a Probe of Planck Scale Noncommutativity, JHEP 09 (2006) 074 [hep-ph/0607188] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Burić, D. Latas, V. Radovanović and J. Trampetic, Chiral fermions in noncommutative electrodynamics: Renormalizability and dispersion, Phys. Rev. D 83 (2011) 045023 [arXiv:1009.4603] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Meljanac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meljanac, S., Samsarov, A., Trampetić, J. et al. Scalar field propagation in the ϕ 4 κ-Minkowski model. J. High Energ. Phys. 2011, 10 (2011). https://doi.org/10.1007/JHEP12(2011)010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)010

Keywords

Navigation