Skip to main content
Log in

Top quark and neutrino composite Higgs bosons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In the context of top-quark condensation models, the top quark alone is too light to saturate the correct value of the electroweak scale by its condensate. Within the seesaw scenario the neutrinos can have their Dirac masses large enough so that their condensates can provide a significant contribution to the value of the electroweak scale. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry. It is mandatory to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that we design a reasonably simplified effective model with two composite Higgs doublets. Additionally, we work with a general number N of right-handed neutrino flavor triplets participating on the seesaw mechanism. There are no experimental constraints limiting this number. The upper limit is set by the model itself. Provided that the condensation scale is of order 1017−18 GeV and the number of right-handed neutrinos is \(\mathcal{O}(100\mbox{--}1000)\), the model predicts masses of additional Higgs bosons below 250 GeV and a suppression of the top-quark Yukawa coupling to the 125 GeV particle at the ∼60 % level of the Standard model value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The rest of standard fermions and their corresponding symmetries are of course present in the model in order to provide proper anomaly cancelation, but we hold them back here as they do not participate in the symmetry breaking in our simplified analysis. Due to the factorization assumption the three generations of leptons exhibit a single common symmetry group.

  2. The limit in parentheses follows from BX s γ but it is very sensitive to assumptions and to input parameters.

  3. In the ATLAS and CMS analyses the overall fermion scaling factor C F is used, instead of C t , which scales only the top-quark Yukawa interaction in our model. In any case C t =C F .

References

  1. G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012)

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012)

    Article  ADS  Google Scholar 

  3. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice et al., Higgs mass and vacuum stability in the standard model at NNLO. J. High Energy Phys. 1208, 098 (2012)

    Article  ADS  Google Scholar 

  4. A.V. Bednyakov, A.F. Pikelner, V.N. Velizhanin, Higgs Self-Coupling Beta-Function in the Standard Model at Three Loops (2013)

    Google Scholar 

  5. K.G. Chetyrkin, M.F. Zoller, β-function for the Higgs self-interaction in the standard model at three-loop level. J. High Energy Phys. 1304, 091 (2013)

    Article  ADS  Google Scholar 

  6. J. Hošek, Electroweak SU(2) L ×U(1) Y gauge model without Higgs field. CERN-TH-4104/85 (1985)

  7. V.A. Miransky, M. Tanabashi, K. Yamawaki, Dynamical electroweak symmetry breaking with large anomalous dimension and t quark condensate. Phys. Lett. B 221, 177 (1989)

    Article  ADS  Google Scholar 

  8. W.A. Bardeen, C.T. Hill, M. Lindner, Minimal dynamical symmetry breaking of the standard model. Phys. Rev. D 41, 1647 (1990)

    Article  ADS  Google Scholar 

  9. S.P. Martin, Dynamical electroweak symmetry breaking with top quark and neutrino condensates. Phys. Rev. D 44, 2892–2898 (1991)

    Article  ADS  Google Scholar 

  10. G. Cvetic, C.S. Kim, Flavor gauge theory, and masses of top and neutrino. Mod. Phys. Lett. A 9, 289–298 (1994)

    Article  ADS  Google Scholar 

  11. S. Antusch, J. Kersten, M. Lindner, M. Ratz, Dynamical electroweak symmetry breaking by a neutrino condensate. Nucl. Phys. B 658, 203–216 (2003)

    Article  ADS  Google Scholar 

  12. J. Hošek, The Glashow–Weinberg–Salam model without scalar fields. Nucl. Phys. (1982, submitted). Preprint JINR-E2-82-542, submitted to 21st Int. Conf. on High Energy Physics, Paris, France, Jul 26–31 (1982). http://inspirehep.net/record/180641

  13. K. Kimura, H. Munakata, Dynamical condensation in the electroweak theory. KOBE-84-04 (1984)

  14. Y. Nagoshi, K. Nakanishi, S. Tanaka, Horizontal gauge interactions as the origin of lepton-quark masses and flavor mixings. Prog. Theor. Phys. 85, 131–140 (1991)

    Article  ADS  Google Scholar 

  15. G. Cvetic, C.S. Kim, Renormalization group analysis of Yukawa parameters with one and two Higgs doublets, and flavor gauge theory. Int. J. Mod. Phys. A 9, 1495–1526 (1994)

    Article  ADS  Google Scholar 

  16. V.N. Gribov, Higgs and top quark masses in the standard model without elementary Higgs boson. Phys. Lett. B 336, 243–247 (1994)

    Article  ADS  Google Scholar 

  17. J.D. Bashford, On a Dynamical Origin for Fermion Generations (2003)

    Google Scholar 

  18. T. Brauner, J. Hošek, A Model of Flavors (2004)

    Google Scholar 

  19. P. Beneš, T. Brauner, A. Smetana, Dynamical electroweak symmetry breaking due to strong Yukawa interactions. J. Phys. G 36, 115004 (2009)

    Article  ADS  Google Scholar 

  20. C. Wetterich, Chiral freedom and electroweak symmetry breaking. Phys. Rev. D 74, 095009 (2006)

    Article  ADS  Google Scholar 

  21. J.-M. Schwindt, C. Wetterich, Asymptotically free four-fermion interactions and electroweak symmetry breaking. Phys. Rev. D 81, 055005 (2010)

    Article  ADS  Google Scholar 

  22. J. Hošek, Soft Mass Generation (2009)

    Google Scholar 

  23. J. Hošek, A model of soft mass generation, in Proceedings of the Workshop in Honor of Toshihide Maskawa’s 70th Birthday and 35th Anniversary of Dynamical Symmetry Breaking in SCGT, ed. by H. Fukaya, M. Harada, M. Tanabashi, K. Yamawaki (World Scientific, Singapore, 2011), pp. 191–197

    Google Scholar 

  24. P. Beneš, J. Hošek, A. Smetana, Masses by Gauge Flavor Dynamics (2011)

    Google Scholar 

  25. A. Smetana, Sterile particles from the flavor gauge model of masses. J. High Energy Phys. 1304, 139 (2013)

    Article  ADS  Google Scholar 

  26. J.R. Ellis, O. Lebedev, The Seesaw with many right-handed neutrinos. Phys. Lett. B 653, 411–418 (2007)

    Article  ADS  Google Scholar 

  27. J. Heeck, Seesaw parametrization for n right-handed neutrinos. Phys. Rev. D 86, 093023 (2012)

    Article  ADS  Google Scholar 

  28. M.-T. Eisele, Leptogenesis with many neutrinos. Phys. Rev. D 77, 043510 (2008)

    Article  ADS  Google Scholar 

  29. B. Feldstein, W. Klemm, Large mixing angles from many right-handed neutrinos. Phys. Rev. D 85, 053007 (2012)

    Article  ADS  Google Scholar 

  30. R.L. Stratonovich, On a method of calculating quantum distribution functions. Sov. Phys. Dokl. 2, 416 (1957)

    ADS  MATH  Google Scholar 

  31. J. Hubbard, Calculation of partition functions. Phys. Rev. Lett. 3, 77–78 (1959)

    Article  ADS  Google Scholar 

  32. M.A. Luty, Dynamical electroweak symmetry breaking with two composite Higgs doublets. Phys. Rev. D 41, 2893 (1990)

    Article  ADS  Google Scholar 

  33. C.T. Hill, C.N. Leung, S. Rao, Renormalization group fixed points and the Higgs boson spectrum. Nucl. Phys. B 262, 517 (1985)

    Article  ADS  Google Scholar 

  34. S. Chatrchyan et al., Search for a light charged Higgs boson in top quark decays in pp collisions at \(\sqrt{s}=7\) TeV. J. High Energy Phys. 1207, 143 (2012)

    Article  ADS  Google Scholar 

  35. G. Aad et al., Search for charged Higgs bosons decaying via H +τν in top quark pair events using pp collision data at \(\sqrt {s}=7\) TeV with the ATLAS detector. J. High Energy Phys. 1206, 039 (2012)

    Article  ADS  Google Scholar 

  36. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rep. 459, 1–241 (2008)

    Article  ADS  Google Scholar 

  37. G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher et al., Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 516, 1–102 (2012)

    Article  ADS  Google Scholar 

  38. G. Aad et al., Coupling properties of the new Higgs-like boson observed with the ATLAS detector at the LHC. ATLAS-CONF-2012-127, ATLAS-COM-CONF-2012-161 (2012)

  39. S. Chatrchyan et al., Observation of a new boson with a mass near 125 GeV. CMS-PAS-HIG-12-020 (2012)

Download references

Acknowledgements

The author gratefully acknowledges discussions with J. Hošek and P. Beneš. The author is also grateful for meeting with F. Sannino and M. Lindner and discussing the issue with them. The work was supported by the Research Program MSM6840770029, by the MEIS of Czech Republic LM2011027 and by the project of International Cooperation ATLAS-CERN LA08032. The work was also supported by TJ Balvan Praha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Smetana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smetana, A. Top quark and neutrino composite Higgs bosons. Eur. Phys. J. C 73, 2513 (2013). https://doi.org/10.1140/epjc/s10052-013-2513-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2513-8

Keywords

Navigation