Skip to main content
Log in

Sterile particles from the flavor gauge model of masses

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Our motivation is to study a dynamics which has the ambition to underlie models of the electroweak symmetry breaking via the condensation of known fermions. The right-handed neutrinos and the seesaw mechanism are necessary ingredients for viability of this scenario. The existence of right-handed neutrinos follows from theoretical consistence of a model based on dynamical flavor gauge symmetry breaking. The model is defined by a particular flavor representation setting of electroweakly charged fermions. Only finite number of versions of the model exists. They differ by the number and the flavor structure of the right-handed neutrino sector. We choose for inspection one of them, the non-minimal version with right-handed neutrinos in one sextet and four anti-triplet flavor representations. We show that a Majorana pairing of the sextet right-handed neutrinos is responsible for the flavor symmetry breaking and for the seesaw pattern of the neutrino mass matrix. The dynamically generated neutrino mass matrix spontaneously breaks the lepton number and the chiral sterility symmetry of the right-handed neutrino sector. As a result, a spectrum of majorons, neutrino composites, manifests. We study main characteristics of both massive sterile neutrinos and majorons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J. Hosek, Soft mass generation, arXiv:0909.0629 [INSPIRE].

  5. J. Hošek, A Model of Soft Mass Generation, pp. 191-197, World Scientific (2011).

  6. P. Benes, J. Hosek and A. Smetana, Masses by Gauge Flavor Dynamics, arXiv:1101.3456 [INSPIRE].

  7. F. Wilczek and A. Zee, Horizontal Interaction and Weak Mixing Angles, Phys. Rev. Lett. 42 (1979) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  8. C. Ong, Adding a horizontal gauge symmetry to the Weinberg-Salam model: an eight quark model, Phys. Rev. D 19 (1979) 2738 [INSPIRE].

    ADS  Google Scholar 

  9. A. Davidson, M. Koca and K.C. Wali, A minimal anomaly free electroweak model for several generations, Phys. Rev. D 20 (1979) 1195 [INSPIRE].

    ADS  Google Scholar 

  10. J. Chakrabarti, Horizontal gauge symmetry and a new picture for the b quark, Phys. Rev. D 20 (1979) 2411 [INSPIRE].

    ADS  Google Scholar 

  11. T. Yanagida, Horizontal symmetry and mass of the top quark, Phys. Rev. D 20 (1979) 2986 [INSPIRE].

    ADS  Google Scholar 

  12. T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].

    Article  ADS  Google Scholar 

  13. Z. Berezhiani and M.Y. Khlopov, The Theory of broken gauge symmetry of families, Sov. J. Nucl. Phys. 51 (1990) 739 [INSPIRE].

    Google Scholar 

  14. Y. Nagoshi, K. Nakanishi and S. Tanaka, Horizontal gauge interactions as the origin of lepton - quark masses and flavor mixings, Prog. Theor. Phys. 85 (1991) 131 [INSPIRE].

    Article  ADS  Google Scholar 

  15. S.P. Martin, A Tumbling top quark condensate model, Phys. Rev. D 46 (1992) 2197 [hep-ph/9204204] [INSPIRE].

    ADS  Google Scholar 

  16. G. Cvetič, Top quark condensation, Rev. Mod. Phys. 71 (1999) 513 [hep-ph/9702381] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J. Hošek, Electroweak SU(2) L × U(1) Y gauge model without Higgs fields, CERN-TH-4104/85.

  18. V. Miransky, M. Tanabashi and K. Yamawaki, Dynamical Electroweak Symmetry Breaking with Large Anomalous Dimension and t Quark Condensate, Phys. Lett. B 221 (1989) 177 [INSPIRE].

    Article  ADS  Google Scholar 

  19. W.A. Bardeen, C.T. Hill and M. Lindner, Minimal Dynamical Symmetry Breaking of the Standard Model, Phys. Rev. D 41 (1990) 1647 [INSPIRE].

    ADS  Google Scholar 

  20. S.P. Martin, Dynamical electroweak symmetry breaking with top quark and neutrino condensates, Phys. Rev. D 44 (1991) 2892 [INSPIRE].

    ADS  Google Scholar 

  21. S. Antusch, J. Kersten, M. Lindner and M. Ratz, Dynamical electroweak symmetry breaking by a neutrino condensate, Nucl. Phys. B 658 (2003) 203 [hep-ph/0211385] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Smetana, Top-quark and neutrino composite Higgs bosons, arXiv:1301.1554 [INSPIRE].

  23. Y. Chikashige, R.N. Mohapatra and R. Peccei, Are There Real Goldstone Bosons Associated with Broken Lepton Number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Schechter and J. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].

    ADS  Google Scholar 

  25. G. Gelmini, S. Nussinov and T. Yanagida, Does Nature Like Nambu-Goldstone Bosons?, Nucl. Phys. B 219 (1983) 31 [INSPIRE].

    Article  ADS  Google Scholar 

  26. P. Benes, Fermion flavor mixing in models with dynamical mass generation, Phys. Rev. D 81 (2010) 065029 [arXiv:0904.0139] [INSPIRE].

    ADS  Google Scholar 

  27. T. Appelquist, M. Piai and R. Shrock, Fermion masses and mixing in extended technicolor models, Phys. Rev. D 69 (2004) 015002 [hep-ph/0308061] [INSPIRE].

    ADS  Google Scholar 

  28. E. Eichten and F. Feinberg, Dynamical Symmetry Breaking of Nonabelian Gauge Symmetries, Phys. Rev. D 10 (1974) 3254 [INSPIRE].

    ADS  Google Scholar 

  29. H. Pagels, Models of dynamically broken gauge theories, Phys. Rev. D 21 (1980) 2336 [INSPIRE].

    ADS  Google Scholar 

  30. E. Eichten and K.D. Lane, Dynamical Breaking of Weak Interaction Symmetries, Phys. Lett. B 90 (1980) 125 [INSPIRE].

    Article  ADS  Google Scholar 

  31. G.G. Raffelt, Axions: Motivation, limits and searches, J. Phys. A 40 (2007) 6607 [hep-ph/0611118] [INSPIRE].

    ADS  Google Scholar 

  32. V. Miransky and K. Yamawaki, Conformal phase transition in gauge theories, Phys. Rev. D 55 (1997) 5051 [Erratum ibid. D 56 (1997) 3768] [hep-th/9611142] [INSPIRE].

    ADS  Google Scholar 

  33. J. Braun, C.S. Fischer and H. Gies, Beyond Miransky Scaling, Phys. Rev. D 84 (2011) 034045 [arXiv:1012.4279] [INSPIRE].

    ADS  Google Scholar 

  34. M.A. Luty, Dynamical electroweak symmetry breaking with two composite Higgs doublets, Phys. Rev. D 41 (1990) 2893 [INSPIRE].

    ADS  Google Scholar 

  35. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  36. S. Raby, S. Dimopoulos and L. Susskind, Tumbling Gauge Theories, Nucl. Phys. B 169 (1980) 373 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Brauner, J. Hosek and R. Sykora, Color superconductor with a color sextet condensate, Phys. Rev. D 68 (2003) 094004 [hep-ph/0303230] [INSPIRE].

    ADS  Google Scholar 

  38. S.R. Coleman, Why There Is Nothing Rather Than Something: A Theory of the Cosmological Constant, Nucl. Phys. B 310 (1988) 643 [INSPIRE].

    Article  ADS  Google Scholar 

  39. S.B. Giddings and A. Strominger, Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. E.K. Akhmedov, Z. Berezhiani, R. Mohapatra and G. Senjanović, Planck scale effects on the majoron, Phys. Lett. B 299 (1993) 90 [hep-ph/9209285] [INSPIRE].

    Article  ADS  Google Scholar 

  41. X.-G. He, B.H. McKellar and G.J. Stephenson, Interactions of a neutrino with an extremely light scalar, Phys. Lett. B 444 (1998) 75 [Erratum ibid. B 581 (2004) 270-271] [hep-ph/9807338] [INSPIRE].

    Article  ADS  Google Scholar 

  42. R. Jackiw and K. Johnson, Dynamical Model of Spontaneously Broken Gauge Symmetries, Phys. Rev. D 8 (1973) 2386 [INSPIRE].

    ADS  Google Scholar 

  43. J. Cornwall and R. Norton, Spontaneous Symmetry Breaking Without Scalar Mesons, Phys. Rev. D 8 (1973) 3338 [INSPIRE].

    ADS  Google Scholar 

  44. G. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number, Phys. Lett. B 99 (1981) 411 [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Lessa and O. Peres, Revising limits on neutrino-Majoron couplings, Phys. Rev. D 75 (2007) 094001 [hep-ph/0701068] [INSPIRE].

    ADS  Google Scholar 

  46. E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. G. Veneziano, U(1) Without Instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. G. Shore, U(A)(1) problems and gluon topology: Anomalous symmetry in QCD, hep-ph/9812354 [INSPIRE].

  49. R. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  50. R. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    ADS  Google Scholar 

  51. G. Barenboim, Inflation might be caused by the right: Handed neutrino, JHEP 03 (2009) 102 [arXiv:0811.2998] [INSPIRE].

    Article  ADS  Google Scholar 

  52. G. Barenboim and J. Rasero, Baryogenesis from a right-handed neutrino condensate, JHEP 03 (2011) 097 [arXiv:1009.3024] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Smetana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smetana, A. Sterile particles from the flavor gauge model of masses. J. High Energ. Phys. 2013, 139 (2013). https://doi.org/10.1007/JHEP04(2013)139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)139

Keywords

Navigation