Skip to main content
Log in

β-function for the Higgs self-interaction in the Standard Model at three-loop level

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We analytically compute the QCD, electroweak, Higgs and third generation Yukawa contributions to the β-function for the Higgs self-coupling as well as for the Higgs mass parameter in the unbroken phase of the Standard Model at three-loop level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge coupling β-functions in the Standard Model to three loops, Phys. Rev. Lett. 108 (2012) 151602 [arXiv:1201.5868] [INSPIRE].

    Article  ADS  Google Scholar 

  2. L.N. Mihaila, J. Salomon and M. Steinhauser, Renormalization constants and β-functions for the gauge couplings of the Standard Model to three-loop order, Phys. Rev. D 86 (2012) 096008 [arXiv:1208.3357] [INSPIRE].

    ADS  Google Scholar 

  3. A. Bednyakov, A. Pikelner and V. Velizhanin, Anomalous dimensions of gauge fields and gauge coupling β-functions in the Standard Model at three loops, JHEP 01 (2013) 017 [arXiv:1210.6873] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. K. Chetyrkin and M. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the Standard Model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Bednyakov, A. Pikelner and V. Velizhanin, Yukawa coupling β-functions in the Standard Model at three loops, arXiv:1212.6829 [INSPIRE].

  6. M. Fischler and J. Oliensis, Two loop corrections to the evolution of the Higgs-Yukawa coupling constant, Phys. Lett. B 119 (1982) 385 [INSPIRE].

    Article  ADS  Google Scholar 

  7. D. Jones, The two loop β-function for a G 1 × G 2 gauge theory, Phys. Rev. D 25 (1982) 581 [INSPIRE].

    ADS  Google Scholar 

  8. I. Jack and H. Osborn, General background field calculations with fermion fields, Nucl. Phys. B 249 (1985) 472 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  10. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 2. Yukawa couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].

    Article  ADS  Google Scholar 

  11. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].

    Article  ADS  Google Scholar 

  12. M.-X. Luo and Y. Xiao, Two loop renormalization group equations in the Standard Model, Phys. Rev. Lett. 90 (2003) 011601 [hep-ph/0207271] [INSPIRE].

    Article  ADS  Google Scholar 

  13. C. Ford, I. Jack and D.R.T. Jones, The Standard Model effective potential at two loops, Nucl. Phys. B 387 (1992) 373 [Erratum ibid. B 504 (1997) 551] [hep-ph/0111190] [INSPIRE].

    Article  ADS  Google Scholar 

  14. N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the Fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].

    Article  ADS  Google Scholar 

  15. C. Ford, D. Jones, P. Stephenson and M. Einhorn, The effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Altarelli and G. Isidori, Lower limit on the Higgs mass in the Standard Model: an update, Phys. Lett. B 337 (1994) 141 [INSPIRE].

    Article  ADS  Google Scholar 

  17. F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    Article  ADS  Google Scholar 

  20. Z.-Z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013 [arXiv:1112.3112] [INSPIRE].

    ADS  Google Scholar 

  21. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  23. I. Masina, The Higgs boson and top quark masses as tests of electroweak vacuum stability, arXiv:1209.0393 [INSPIRE].

  24. ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb−1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  25. CMS collaboration, Combined results of searches for the Standard Model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  26. J.C. Collins, Normal products in dimensional regularization, Nucl. Phys. B 92 (1975) 477 [INSPIRE].

    Article  ADS  Google Scholar 

  27. T. van Ritbergen, A. Schellekens and J. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].

    Article  ADS  Google Scholar 

  28. P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. M. Misiak and M. Münz, Two loop mixing of dimension five flavor changing operators, Phys. Lett. B 344 (1995) 308 [hep-ph/9409454] [INSPIRE].

    Article  ADS  Google Scholar 

  30. K.G. Chetyrkin, M. Misiak and M. Münz, β-functions and anomalous dimensions up to three loops, Nucl. Phys. B 518 (1998) 473 [hep-ph/9711266] [INSPIRE].

    ADS  Google Scholar 

  31. M. Steinhauser, MATAD: a program package for the computation of MAssive TADpoles, Comput. Phys. Commun. 134 (2001) 335 [hep-ph/0009029] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. E. Brezin, J.C. Le Guillou, J. Zinn-Justin and B.G. Nickel, Higher order contributions to critical exponents, Phys. Lett. A 44 (1973) 227.

    Article  ADS  Google Scholar 

  33. E. Brézin, J. Le Guillou and J. Zinn-Justin, Addendum to Wilsons theory of critical phenomena and callan-symanzik equations in 4-∊ dimensions, Phys. Rev. D 9 (1974) 1121 [Erratum ibid. D 10 (1974) 2046] [INSPIRE].

    ADS  Google Scholar 

  34. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  35. J. Espinosa, G. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 05 (2008) 002 [arXiv:0710.2484] [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. Hempfling and B.A. Kniehl, On the relation between the fermion pole mass and MS Yukawa coupling in the Standard Model, Phys. Rev. D 51 (1995) 1386 [hep-ph/9408313] [INSPIRE].

    ADS  Google Scholar 

  37. A. Sirlin and R. Zucchini, Dependence of the quartic coupling \( {{\overline{h}}_{{\overline{M}S}}}(M) \) on m H and the possible onset of new physics in the Higgs sector of the Standard Model, Nucl. Phys. B 266 (1986) 389 [INSPIRE].

    Article  ADS  Google Scholar 

  38. A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Higgs self-coupling β-function in the Standard Model at three loops, arXiv:1303.4364 [INSPIRE].

  39. M. Tentyukov and J. Vermaseren, The multithreaded version of FORM, Comput. Phys. Commun. 181 (2010) 1419 [hep-ph/0702279] [INSPIRE].

    Article  ADS  Google Scholar 

  40. J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  41. J. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.F. Zoller.

Additional information

ArXiv ePrint: 1303.2890

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetyrkin, K., Zoller, M. β-function for the Higgs self-interaction in the Standard Model at three-loop level. J. High Energ. Phys. 2013, 91 (2013). https://doi.org/10.1007/JHEP04(2013)091

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)091

Keywords

Navigation