Skip to main content
Log in

Effects of heavy meson loops on heavy quarkonium radiative transitions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Radiative transitions between charmonium states offer an insight into the internal structure of heavy quark bound states within QCD. In this work, we systematically investigate the coupled-channel effects of intermediate charmed mesons to charmonium radiative transitions utilizing an effective Lagrangian approach. Our results show that the coupled-channel effects of these decays under the open charm thresholds are relatively weak, while the coupled-channel effects of the excited P-wave states close to the charmed pairs thresholds are relatively important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.J. Aubert et al. (E598 Collaboration), Phys. Rev. Lett. 33, 1404 (1974)

    Article  ADS  Google Scholar 

  2. J.E. Augestin et al. (SLAC-SP-017 Collaboration), Phys. Rev. Lett. 33, 1406 (1974)

    Article  ADS  Google Scholar 

  3. D.M. Asner et al., arXiv:0809.1869 [hep-ex]

  4. M.F.M. Lutz et al. (PANDA Collaboration), arXiv:0903.3905 [hep-ex]

  5. N. Brambilla et al. (Quarkonium Working Group), arXiv:hep-ph/0412158

  6. N. Brambilla, S. Eidelman, B.K. Heltsley, R. Vogt, G.T. Bodwin, E. Eichten, A.D. Frawley, A.B. Meyer et al., Eur. Phys. J. C 71, 1534 (2011). arXiv:1010.5827 [hep-ph]

    Article  ADS  Google Scholar 

  7. E.S. Swanson, Phys. Rep. 429, 243 (2006). arXiv:hep-ph/0601110

    Article  ADS  Google Scholar 

  8. E. Eichten, S. Godfrey, H. Mahlke, J.L. Rosner, Rev. Mod. Phys. 80, 1161 (2008). arXiv:hep-ph/0701208

    Article  ADS  Google Scholar 

  9. M.B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008). arXiv:0711.4556 [hep-ph]

    Article  ADS  Google Scholar 

  10. S. Godfrey, S.L. Olsen, Annu. Rev. Nucl. Part. Sci. 58, 51 (2008). arXiv:0801.3867 [hep-ph]

    Article  ADS  Google Scholar 

  11. N. Drenska, R. Faccini, F. Piccinini, A. Polosa, F. Renga, C. Sabelli, Riv. Nuovo Cimento 033, 633 (2010). arXiv:1006.2741 [hep-ph]

    Google Scholar 

  12. J.J. Dudek, R.G. Edwards, D.G. Richards, Phys. Rev. D 73, 074507 (2006)

    Article  ADS  Google Scholar 

  13. J.J. Dudek, R. Edwards, C.E. Thomas, Phys. Rev. D 79, 094504 (2009)

    Article  ADS  Google Scholar 

  14. Y. Chen, D.-C. Du, B.-Z. Guo, N. Li, C. Liu, H. Liu, Y.-B. Liu, J.-P. Ma et al., Phys. Rev. D 84, 034503 (2011). arXiv:1104.2655 [hep-lat]

    Article  ADS  Google Scholar 

  15. R.E. Mitchell et al. (CLEO Collaboration), Phys. Rev. Lett. 102, 011801 (2009)

    Article  ADS  Google Scholar 

  16. G. Li, Q. Zhao, Phys. Lett. B 670, 55 (2008)

    Article  ADS  Google Scholar 

  17. G. Li, Q. Zhao, Phys. Rev. D 84, 074005 (2011). arXiv:1107.2037 [hep-ph]

    Article  ADS  Google Scholar 

  18. F.-K. Guo, C. Hanhart, U.-G. Meissner, Phys. Rev. Lett. 103, 082003 (2009). Erratum: Phys. Rev. Lett. 104, 109901 (2010). arXiv:0907.0521 [hep-ph]

    Article  ADS  Google Scholar 

  19. F.-K. Guo, U.-G. Meissner, Phys. Rev. Lett. 108, 112002 (2012). arXiv:1111.1151 [hep-ph]

    Article  ADS  Google Scholar 

  20. X.Q. Li, D.V. Bugg, B.S. Zou, Phys. Rev. D 55, 1421 (1997)

    Article  ADS  Google Scholar 

  21. Q. Zhao, B.S. Zou, Phys. Rev. D 74, 114025 (2006). arXiv:hep-ph/0606196

    Article  ADS  Google Scholar 

  22. Q. Zhao, Phys. Lett. B 636, 197 (2006). arXiv:hep-ph/0602216

    Article  ADS  Google Scholar 

  23. J.J. Wu, Q. Zhao, B.S. Zou, Phys. Rev. D 75, 114012 (2007). arXiv:0704.3652 [hep-ph]

    Article  ADS  Google Scholar 

  24. X. Liu, X.Q. Zeng, X.Q. Li, Phys. Rev. D 74, 074003 (2006). arXiv:hep-ph/0606191

    Article  ADS  Google Scholar 

  25. H.Y. Cheng, C.K. Chua, A. Soni, Phys. Rev. D 71, 014030 (2005). arXiv:hep-ph/0409317

    Article  ADS  Google Scholar 

  26. V.V. Anisovich, D.V. Bugg, A.V. Sarantsev, B.S. Zou, Phys. Rev. D 51, 4619 (1995)

    Article  ADS  Google Scholar 

  27. Q. Zhao, B.s. Zou, Z.b. Ma, Phys. Lett. B 631, 22 (2005). arXiv:hep-ph/0508088

    Article  ADS  Google Scholar 

  28. G. Li, Q. Zhao, B.S. Zou, Phys. Rev. D 77, 014010 (2008). arXiv:0706.0384 [hep-ph]

    Article  ADS  Google Scholar 

  29. Y.J. Zhang, G. Li, Q. Zhao, Phys. Rev. Lett. 102, 172001 (2009). arXiv:0902.1300 [hep-ph]

    Article  ADS  Google Scholar 

  30. X. Liu, B. Zhang, X.-Q. Li, Phys. Lett. B 675, 441 (2009). arXiv:0902.0480 [hep-ph]

    Article  ADS  Google Scholar 

  31. Z.-K. Guo, S. Narison, J.-M. Richard, Q. Zhao

  32. G.-Y. Chen, Q. Zhao, Phys. Lett. B 718, 1369 (2013). arXiv:1209.6268 [hep-ph]

    Article  ADS  Google Scholar 

  33. G. Li, X.-h. Liu, Q. Wang, Q. Zhao, arXiv:1302.1745 [hep-ph]

  34. X.H. Liu, Q. Zhao, Phys. Rev. D 81, 014017 (2010). arXiv:0912.1508 [hep-ph]

    Article  ADS  Google Scholar 

  35. X.H. Liu, Q. Zhao, J. Phys. G 38, 035007 (2011). arXiv:1004.0496 [hep-ph]

    Article  ADS  Google Scholar 

  36. Q. Wang, X.-H. Liu, Q. Zhao, Phys. Lett. B 711, 364 (2012). arXiv:1202.3026 [hep-ph]

    Article  ADS  Google Scholar 

  37. F.K. Guo, C. Hanhart, G. Li, U.G. Meissner, Q. Zhao, Phys. Rev. D 82, 034025 (2010). arXiv:1002.2712 [hep-ph]

    Article  ADS  Google Scholar 

  38. F.K. Guo, C. Hanhart, G. Li, U.G. Meissner, Q. Zhao, Phys. Rev. D 83, 034013 (2011). arXiv:1008.3632 [hep-ph]

    Article  ADS  Google Scholar 

  39. J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  40. T. Barnes, S. Godfrey, E.S. Swanson, Phys. Rev. D 72, 054026 (2005)

    Article  ADS  Google Scholar 

  41. H.J. Lipkin, Phys. Lett. B 179, 278 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  42. H.J. Lipkin, Nucl. Phys. B 291, 720 (1987)

    Article  ADS  Google Scholar 

  43. P. Colangelo, F. De Fazio, T.N. Pham, Phys. Rev. D 69, 054023 (2004). arXiv:hep-ph/0310084

    Article  ADS  Google Scholar 

  44. R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, G. Nardulli, Phys. Rep. 281, 145 (1997). arXiv:hep-ph/9605342

    Article  ADS  Google Scholar 

  45. J. Hu, T. Mehen, Phys. Rev. D 73, 054003 (2006). arXiv:hep-ph/0511321

    Article  ADS  Google Scholar 

  46. J.F. Amundson, C.G. Boyd, E.E. Jenkins, M.E. Luke, A.V. Manohar, J.L. Rosner, M.J. Savage, M.B. Wise, Phys. Lett. B 296, 415 (1992). arXiv:hep-ph/9209241

    Article  ADS  Google Scholar 

  47. Y. Dong, A. Faessler, T. Gutsche, V.E. Lyubovitskij, J. Phys. G 38, 015001 (2011). arXiv:0909.0380 [hep-ph]

    Article  ADS  Google Scholar 

  48. T. Mehen, D.-L. Yang, Phys. Rev. D 85, 014002 (2012). arXiv:1111.3884 [hep-ph]

    Article  ADS  Google Scholar 

  49. S. Uehara et al. (Belle Collaboration), Phys. Rev. Lett. 96, 082003 (2006). arXiv:hep-ex/0512035

    Article  ADS  Google Scholar 

  50. E.J. Eichten, K. Lane, C. Quigg, Phys. Rev. D 73, 014014 (2006). Erratum: Phys. Rev. D 73, 079903 (2006). arXiv:hep-ph/0511179

    Article  ADS  Google Scholar 

  51. B.-Q. Li, K.-T. Chao, Phys. Rev. D 79, 094004 (2009). arXiv:0903.5506 [hep-ph]

    Article  ADS  Google Scholar 

  52. S. Uehara et al. (Belle Collaboration), Phys. Rev. Lett. 104, 092001 (2010). arXiv:0912.4451 [hep-ex]

    Article  ADS  Google Scholar 

  53. X. Liu, Z.-G. Luo, Z.-F. Sun, Phys. Rev. Lett. 104, 122001 (2010). arXiv:0911.3694 [hep-ph]

    Article  ADS  Google Scholar 

  54. F.-K. Guo, U.-G. Meissner, Phys. Rev. D 86, 091501 (2012). arXiv:1208.1134 [hep-ph]

    Article  ADS  Google Scholar 

  55. F.E. Close, P.R. Page, Phys. Lett. B 578, 119 (2004). arXiv:hep-ph/0309253

    Article  ADS  Google Scholar 

  56. M.B. Voloshin, Phys. Lett. B 579, 316 (2004). arXiv:hep-ph/0309307

    Article  ADS  Google Scholar 

  57. C.-Y. Wong, Phys. Rev. C 69, 055202 (2004). arXiv:hep-ph/0311088

    Article  ADS  Google Scholar 

  58. N.A. Tornqvist, Phys. Lett. B 590, 209 (2004). arXiv:hep-ph/0402237

    Article  ADS  Google Scholar 

  59. B.A. Li, Phys. Lett. B 605, 306 (2005). arXiv:hep-ph/0410264

    Article  ADS  Google Scholar 

  60. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Phys. Rev. D 71, 014028 (2005). arXiv:hep-ph/0412098

    Article  ADS  Google Scholar 

  61. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Lett. B 634, 214 (2006). arXiv:hep-ph/0512230

    Article  ADS  Google Scholar 

  62. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 102, 132001 (2009). arXiv:0809.0042 [hep-ex]

    Article  ADS  Google Scholar 

  63. V. Bhardwaj et al. (Belle Collaboration), Phys. Rev. Lett. 107, 091803 (2011). arXiv:1105.0177 [hep-ex]

    Article  ADS  Google Scholar 

  64. T. Barnes, S. Godfrey, Phys. Rev. D 69, 054008 (2004). arXiv:hep-ph/0311162

    Article  ADS  Google Scholar 

  65. M. Suzuki, Phys. Rev. D 72, 114013 (2005). arXiv:hep-ph/0508258

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank F.-K. Guo and Q. Zhao for useful discussions. This work is supported, in part, by the National Natural Science Foundation of China (Grant Nos. 11175104, and 11275113) and the Natural Science Foundation of Shandong Province (Grant Nos. ZR2011AM006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Appendix: The transition amplitude

Appendix: The transition amplitude

In the following, we present the transition amplitudes for the intermediate meson loops listed in Table 1 in the framework of the ELA. Notice that the expressions are similar for the charged, neutral, and charmed-strange mesons except that different charmed meson masses are applied. We thus only present the amplitudes for those charged charmed meson loops. G 1, G 2, and G 3 are vertex couplings corresponding the initial charmonium, final charmonium and final photon vertex for each loop, and the explicit expression can be found in Eq. (16). [p 1, p 3, p 2] are the four-vector momenta for the intermediate mesons [M1, M3, M2], respectively. p i (p f ), ε i (ε f ), and ϕ i (ϕ f ) are the initial (final) charmonium four-vector momentum, polarization vector, and polarization tensor, respectively. p γ and ε γ are the final photon four-vector momentum and polarization vector, respectively.

(i) 1−−γ0++ (ψ′→γχ c0, ψ(3770)→γχ c0)

$$\begin{aligned} \mathcal{M}_{[DDD]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi)^4} \bigl[G_1 \varepsilon _i^\mu(p_{1\mu}-p_{3\mu}) \bigr] [iG_2] \bigl[e\varepsilon_\gamma^{*\theta}(p_{1\theta}+p_{2\theta}) \bigr] \\ &{}\times\frac{i}{p_1^2-m_1^2} \frac{i}{p_2^2-m_2^2} \frac{i}{ p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[DD^*D^*]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi )^4} \bigl[G_1\varepsilon_{\mu\nu\alpha\beta} p_i^\mu \varepsilon_i^\nu \bigl(p_3^\beta-p_1^\beta \bigr)\bigr] [iG_2] \bigl[G_3\varepsilon_{\theta\phi\kappa\lambda} p_\gamma^\theta\varepsilon_\gamma^{*\phi} p_2^\kappa\bigr] \\ &{}\times \frac{i}{p_1^2-m_1^2} \frac{i(-g^{\rho\lambda}+p_2^\rho p_2^\lambda/m_2^2)}{p_2^2-m_2^2} \frac {i(-g^\alpha_\rho+p_3^\alpha p_{3\rho}/m_3^2)}{p_3^2-m_3^2}\mathcal {F} \bigl(m_2,p_2^2\bigr) \\ \mathcal{M}_{[D^*DD]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi )^4} \bigl[-G_1\varepsilon_{\mu\nu\alpha\beta} p_i^\mu \varepsilon_i^\nu \bigl(p_3^\beta-p_1^\beta \bigr)\bigr] [iG_2] \bigl[G_3\varepsilon_{\theta\phi\kappa\lambda} p_\gamma^\theta\varepsilon_\gamma^{*\phi} p_1^\kappa\bigr] \\ &{}\times \frac{i(-g^{\alpha\lambda}+p_1^\alpha p_1^\lambda/m_1^2)}{ p_1^2-m_1^2} \frac{i}{p_2^2-m_2^2} \frac{i}{p_3^2-m_3^2}\prod _i\mathcal {F}_i\bigl(m_i,p_i^2 \bigr) \\ \mathcal{M}_{[D^*D^*D^*]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi )^4} \bigl[G_1(2p_{1\mu}g_{\alpha\beta}+p_{3\alpha}g_{\beta\mu}-p_{1\beta} g_{\alpha\mu})\varepsilon_i^\mu\bigr] [iG_2] \\ &{}\times\bigl[-e\varepsilon_{\gamma}^{*\theta}\bigl(g_{\phi\kappa}(p_{2\theta }+p_{1\theta})+g_{\kappa\theta} p_{1\phi} - g_{\phi\theta} p_{2\kappa}\bigr) + G_3 \varepsilon_{\gamma}^{*\theta}(g_{\kappa\theta} p_{1\phi} - g_{\phi \theta} p_{2\kappa})\bigr] \\ &{}\times\frac{i(-g^{\alpha\kappa}+p_1^\alpha p_1^\kappa/m_1^2)}{p_1^2-m_1^2} \frac {i(-g^{\rho\phi}+p_2^\rho p_2^\phi/m_2^2)}{p_2^2-m_2^2} \frac {i(-g^{\beta\rho}+p_3^\beta p_3^\rho/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) . \end{aligned}$$
(A.1)

(ii) 1−−γ1++ (ψ′→γχ c1, ψ(3770)→γχ c1)

$$\begin{aligned} \mathcal{M}_{[DDD^*]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi)^4} \bigl[G_1 \varepsilon_i^\mu(p_{1\mu}-p_{3\mu}) \bigr] \bigl[G_2\varepsilon_{f\rho }^*\bigr] \bigl[G_3\varepsilon_{\theta\phi\kappa\lambda} p_\gamma^\theta \varepsilon _\gamma^{*\phi} p_2^\kappa\bigr] \\ &{}\times \frac{i}{p_1^2-m_1^2} \frac{i(-g^{\rho\lambda}+p_2^\rho p_2^\lambda/m_2^2)}{p_2^2-m_2^2} \frac {i}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) \\ \mathcal{M}_{[DD^*D]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi )^4} \bigl[G_1\varepsilon_{\mu\nu\alpha\beta} p_i^\mu \varepsilon_i^\nu \bigl(p_3^\beta-p_1^\beta \bigr)\bigr] \bigl[G_2\varepsilon_{f \rho}^*\bigr] \bigl[e \varepsilon_\gamma ^{*\theta}(p_{1\theta}+p_{2\theta}) \bigr] \\ &{}\times\frac{i}{p_1^2-m_1^2}\frac{i}{p_2^2-m_2^2} \frac {i(-g^{\alpha\rho}+p_3^\alpha p_3^\rho/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) \\ \mathcal{M}_{[D^*DD^*]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{ (2\pi)^4} \bigl[-G_1\varepsilon_{\mu\nu\alpha\beta} p_i^\mu \varepsilon_i^\nu \bigl(p_3^\beta-p_1^\beta \bigr)\bigr] \bigl[G_2\varepsilon_{f \rho}^*\bigr] \\ &{}\times\bigl[-e\varepsilon_{\gamma}^{*\theta}\bigl(g_{\phi\kappa}(p_{2\theta }+p_{1\theta})+g_{\kappa\theta} p_{1\phi} - g_{\phi\theta} p_{2\kappa}\bigr) + G_3 \varepsilon_{\gamma}^{*\theta}(g_{\kappa\theta} p_{1\phi} - g_{\phi \theta} p_{2\kappa})\bigr] \\ &{}\times\frac{i(-g^{\alpha\kappa}+p_1^\alpha p_1^\kappa/m_1^2)}{ p_1^2-m_1^2} \frac{i(-g^{\rho\phi}+p_2^\rho p_2^\phi/m_2^2)}{p_2^2-m_2^2} \frac{i}{p_3^2-m_3^2}\prod _i\mathcal {F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[D^*D^*D]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{ (2\pi)^4} \bigl[G_1(2p_{1\mu}g_{\alpha\beta}+p_{3\alpha}g_{\beta\mu }-p_{1\beta} g_{\alpha\mu})\varepsilon_i^\mu\bigr] \bigl[G_2\varepsilon_{f\rho }^*\bigr] \\ &{}\times\bigl[-e\varepsilon_{\gamma}^{*\theta}\bigl(g_{\phi\kappa}(p_{2\theta }+p_{1\theta})+g_{\kappa\theta} p_{1\phi} - g_{\phi\theta} p_{2\kappa}\bigr) + G_3 \varepsilon_{\gamma}^{*\theta}(g_{\kappa\theta} p_{1\phi} - g_{\phi \theta} p_{2\kappa})\bigr] \\ &{}\times \frac{i(-g^{\alpha\lambda}+p_1^\alpha p_1^\lambda/m_1^2)}{p_1^2-m_1^2} \frac {i}{p_2^2-m_2^2} \frac {i(-g^{\beta\rho}+p_3^\beta p_3^\rho/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) . \end{aligned}$$
(A.2)

(iii) 1−−γ2++ (ψ′→γχ c2, ψ(3770)→γχ c2)

$$\begin{aligned} \mathcal{M}_{[DD^*D^*]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi )^4} \bigl[G_1\varepsilon_{\mu\nu\alpha\beta} p_i^\mu \varepsilon_i^\nu \bigl(p_3^\beta-p_1^\beta \bigr)\bigr] \bigl[iG_2\phi_{f\rho\sigma}^*\bigr] \bigl[G_3\varepsilon_{\theta \phi\kappa\lambda} p_\gamma^\theta \varepsilon_\gamma^{*\phi} p_2^\kappa \bigr] \\ &{}\times\frac{i}{p_1^2-m_1^2} \frac {i(-g^{\rho\lambda}+p_2^\rho p_2^\lambda/m_2^2)}{p_2^2-m_2^2} \frac{i(-g^{\alpha\sigma}+p_3^\alpha p_3^\sigma/m_3^2)}{ p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{D^*D^*D^*} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi )^4} \bigl[G_1(2p_{1\mu}g_{\alpha\beta}+p_{3\alpha}g_{\beta\mu}-p_{1\beta} g_{\alpha\mu})\varepsilon_i^\mu\bigr] [iG_2\phi_{f\rho\sigma}] \\ &{}\times\bigl[-e\varepsilon_{\gamma}^{*\theta}\bigl(g_{\phi\kappa}(p_{2\theta }+p_{1\theta})+g_{\kappa\theta} p_{1\phi} - g_{\phi\theta} p_{2\kappa}\bigr) + G_3 \varepsilon_{\gamma}^{*\theta}(g_{\kappa\theta} p_{1\phi} - g_{\phi \theta} p_{2\kappa})\bigr] \\ &{}\times \frac{i(-g^{\alpha\kappa}+p_1^\alpha p_1^\kappa/m_1^2)}{ p_1^2-m_1^2}\frac {i(-g^{\rho\phi}+p_2^\rho p_2^\phi/m_2^2)}{p_2^2-m_2^2} \frac {i(-g^{\beta\sigma}+p_3^\beta p_3^\sigma/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) . \end{aligned}$$
(A.3)

(iv) 0−+γ1+− (η′→γh c )

$$\begin{aligned} \mathcal{M}_{[DD^*D]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi)^4} \bigl[-G_1 (p_{i\mu }+p_{1\mu})\bigr] [G_2\varepsilon_{f\rho}] \bigl[e\varepsilon_\gamma^{*\theta} (p_{1\theta}+p_{2\theta})\bigr] \\ &{}\times\frac{i}{p_1^2-m_1^2} \frac {i}{p_2^2-m_2^2} \frac{i(-g^{\mu\rho}+p_3^\mu p_3^\rho/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[DD^*D^*]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi)^4} \bigl[-G_1 (p_{i\mu}+p_{1\mu})\bigr] \bigl[-G_2\varepsilon_{\rho\sigma\xi\tau} p_{f}^\sigma \varepsilon_{f}^\xi\bigr] \bigl[G_3 \varepsilon_{\theta\phi\kappa\lambda} p_\gamma ^\theta\varepsilon_\gamma^{*\phi} p_2^\kappa\bigr] \\ &{}\times\frac{i}{p_1^2-m_1^2} \frac {i(-g^{\rho\lambda}+p_2^\rho p_2^\lambda/m_2^2)}{p_2^2-m_2^2} \frac{i(-g^{\mu\tau}+p_3^\mu p_3^\tau/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[D^*DD^*]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi)^4} \bigl[-G_1(p_{i \mu}+p_{3\mu})\bigr] [G_2 \varepsilon_{f\rho}] \\ &{}\times\bigl[-e\varepsilon_{\gamma}^{*\theta}\bigl(g_{\phi\kappa}(p_{2\theta }+p_{1\theta})+g_{\kappa\theta} p_{1\phi} - g_{\phi\theta} p_{2\kappa}\bigr) + G_3 \varepsilon_{\gamma}^{*\theta}(g_{\kappa\theta} p_{1\phi} - g_{\phi \theta} p_{2\kappa})\bigr] \\ &{}\times\frac{i(-g^{\mu\kappa}+p_1^\mu p_1^\kappa/m_1^2)}{ p_1^2-m_1^2} \frac{i(-g^{\rho\phi}+p_2^\rho p_2^\phi/m_2^2)}{p_2^2-m_2^2} \frac{i}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[D^*D^*D]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi )^4} \bigl[G_1\varepsilon_{\mu\nu\alpha\beta} p_1^\mu p_{i}^\beta\bigr] [G_2\varepsilon_{f\rho}] \bigl[G_3\varepsilon_{\theta\phi\kappa\lambda} p_\gamma^\theta \varepsilon_\gamma^{*\phi} p_1^\kappa\bigr] \\ &{}\times\frac{i(-g^{\nu\lambda}+p_1^\nu p_1^\lambda/m_1^2)}{ p_1^2-m_1^2} \frac{i}{p_2^2-m_2^2} \frac{i(-g^{\alpha\rho}+p_3^\alpha p_3^\rho/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[D^*D^*D^*]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi )^4} \bigl[G_1\varepsilon_{\mu\nu\alpha\beta} p_1^\mu p_{i}^\beta\bigr] \bigl[-G_2 \varepsilon_{\rho\sigma\xi\tau} p_{f}^\sigma\varepsilon_{f}^\xi \bigr] \\ &{}\times\bigl[-e\varepsilon_{\gamma}^{*\theta}\bigl(g_{\phi\kappa}(p_{2\theta }+p_{1\theta})+g_{\kappa\theta} p_{1\phi} - g_{\phi\theta} p_{2\kappa}\bigr) + G_3 \varepsilon_{\gamma}^{*\theta}(g_{\kappa\theta} p_{1\phi} - g_{\phi \theta} p_{2\kappa})\bigr] \\ &{}\times \frac{i(-g^{\nu\kappa}+p_1^\nu p_1^\kappa/m_1^2)}{ p_1^2-m_1^2} \frac{i(-g^{\rho\phi}+p_2^\rho p_2^\phi/m_2^2)}{p_2^2-m_2^2} \frac{i(-g^{\alpha\tau}+p_3^\alpha p_3^\tau/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) . \end{aligned}$$
(A.4)

(v) 0++γ1−− (χ c0γJ/ψ, \(\chi _{c0}' \to\gamma J/\psi, \gamma\psi, \gamma\psi(3770)\))

$$\begin{aligned} \mathcal{M}_{[DDD]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{(2\pi)^4}[iG_1] \bigl[-G_2 \varepsilon_f^{*\rho}(p_{2\rho}-p_{3\rho}) \bigr] \bigl[e\varepsilon_\gamma ^{*\theta} (p_{1\theta}+p_{2\theta}) \bigr] \\ &{}\times\frac{i}{p_1^2-m_1^2} \frac{i}{p_2^2-m_2^2} \frac{i}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[DDD^*]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{(2\pi )^4}[iG_1] \bigl[G_2\varepsilon_{\rho\sigma\xi\tau} p_f^\rho\varepsilon _f^{*\sigma} \bigl(p_3^\tau-p_2^\tau\bigr)\bigr] \bigl[-eG_3\varepsilon_{\theta\phi\kappa \lambda} p_\gamma^\theta \varepsilon_\gamma^{*\phi} p_2^\kappa\bigr] \\ &{}\times\frac{i}{p_1^2-m_1^2} \frac{i(-g^{\xi\lambda}+p_2^\xi p_2^\lambda/m_2^2)}{p_2^2-m_2^2} \frac{i}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[D^*D^*D]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{(2\pi )^4}[iG_1] \bigl[G_2\varepsilon_{\rho\sigma\xi\tau} p_f^\rho\varepsilon _f^{*\sigma} \bigl(p_3^\tau-p_2^\tau\bigr)\bigr] \bigl[-e G_3\varepsilon_{\theta\phi\kappa \lambda} p_\gamma^\theta \varepsilon_\gamma^{*\phi} p_1^\kappa\bigr] \\ &{}\times\frac{i(-g^{\mu\lambda}+p_1^\mu p_1^\lambda/m_1^2)}{ p_1^2-m_1^2} \frac{i}{p_2^2-m_2^2} \frac{i(-g^{\mu\xi}+p_3^\mu p_3^\xi/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[D^*D^*D^*]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{(2\pi )^4}[iG_1] \bigl[G_2(2p_{3\rho}g_{\sigma\xi}+p_{2\sigma}g_{\xi\rho}-p_{3\xi} g_{\sigma\rho})\varepsilon_f^{*\rho}\bigr] \\ &{}\times\bigl[-e\varepsilon_{\gamma}^{*\theta}\bigl(g_{\phi\kappa}(p_{2\theta }+p_{1\theta})+g_{\kappa\theta} p_{1\phi} - g_{\phi\theta} p_{2\kappa}\bigr) + G_3 \varepsilon_{\gamma}^{*\theta}(g_{\kappa\theta} p_{1\phi} - g_{\phi \theta} p_{2\kappa})\bigr] \\ &{}\times \frac{i(-g^{\mu\kappa}+p_1^\mu p_1^\kappa/m_1^2)}{ p_1^2-m_1^2} \frac{i(-g^{\xi\phi}+p_2^\xi p_2^\phi/m_2^2)}{p_2^2-m_2^2} \frac{i(-g^{\mu\sigma}+p_3^\mu p_3^\sigma/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) . \end{aligned}$$
(A.5)

(vi) 1++γ1−− (χ c1γJ/ψ, \(\chi _{c1}' \to\gamma J/\psi, \gamma\psi, \gamma\psi(3770)\))

$$\begin{aligned} \mathcal{M}_{[DD^*D]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{(2\pi)^4}[G_1\varepsilon _{i \mu}] \bigl[G_2\varepsilon_{\rho\sigma\xi\tau} p_f^\rho \varepsilon _f^{*\sigma} \bigl(p_3^\tau-p_2^\tau \bigr)\bigr] \bigl[e\varepsilon_\gamma^{*\theta} (p_{1\theta}+p_{2\theta})\bigr] \\ &{}\times\frac{i}{p_1^2-m_1^2} \frac {i}{p_2^2-m_2^2} \frac{i(-g^{\mu\xi}+p_3^\mu p_3^\xi/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[DD^*D^*]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{(2\pi )^4}[G_1\varepsilon_{i\mu}] \bigl[G_2(2p_{3\rho}g_{\sigma\xi}+p_{2\sigma }g_{\xi\rho}-p_{3\xi} g_{\sigma\rho})\varepsilon_f^{*\rho}\bigr] \bigl[-e G_3\varepsilon_{\theta\phi\kappa\lambda} p_\gamma^\theta \varepsilon _\gamma^{*\phi} p_2^\kappa\bigr] \\ &{}\times\frac{i}{p_1^2-m_1^2} \frac {i(-g^{\xi\lambda}+p_2^\xi p_2^\lambda/m_2^2)}{p_2^2-m_2^2} \frac{i(-g^{\mu\sigma}+p_3^\mu p_3^\sigma/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[D^*DD]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{(2\pi)^4}[G_1\varepsilon _{i\mu}] \bigl[-G_2 \varepsilon_f^\rho(p_{2\rho}-p_{3\rho}) \bigr] \bigl[G_3\varepsilon_{\theta\phi\kappa\lambda} p_\gamma^\theta \varepsilon _\gamma^{*\phi} p_1^\kappa\bigr] \\ &{}\times\frac{i(-g^{\mu\lambda}+p_1^\mu p_1^\lambda/m_1^2)}{ p_1^2-m_1^2} \frac {i}{p_2^2-m_2^2} \frac{i}{p_3^2-m_3^2}\prod _i\mathcal {F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[D^*DD^*]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{(2\pi )^4}[G_1\varepsilon_{i\mu}] \bigl[G_2\varepsilon_{\rho\sigma\xi\tau} p_f^\rho \varepsilon_f^{*\sigma} \bigl(p_3^\tau-p_2^\tau \bigr)\bigr] \\ &{}\times\bigl[-e\varepsilon_{\gamma}^{*\theta}\bigl(g_{\phi\kappa}(p_{2\theta }+p_{1\theta})+g_{\kappa\theta} p_{1\phi} - g_{\phi\theta} p_{2\kappa}\bigr) + G_3 \varepsilon_{\gamma}^{*\theta}(g_{\kappa\theta} p_{1\phi} - g_{\phi \theta} p_{2\kappa})\bigr] \\ &{}\times\frac{i(-g^{\mu\kappa}+p_1^\mu p_1^\kappa/m_1^2)}{ p_1^2-m_1^2} \frac {i(-g^{\xi\phi}+p_2^\xi p_2^\phi/m_2^2)}{p_2^2-m_2^2} \frac{i}{ p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) . \end{aligned}$$
(A.6)

(viii) 2++γ1−− (χ c2γJ/ψ, \(\chi _{c2}' \to\gamma J/\psi, \gamma\psi, \gamma\psi(3770)\))

$$\begin{aligned} \mathcal{M}_{[D^*D^*D]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{(2\pi)^4}[iG_1 \varepsilon_{i\mu\nu}] \bigl[G_2\varepsilon_{\rho\sigma\xi\tau} p_f^\rho \varepsilon_f^{*\sigma} \bigl(p_3^\tau-p_2^\tau \bigr)\bigr] \bigl[G_3\varepsilon_{\theta\phi \kappa\lambda} p_\gamma^\theta \varepsilon_\gamma^{*\phi} p_1^\kappa\bigr] \\ &{}\times\frac{i(-g^{\mu\lambda}+p_1^\mu p_1^\lambda/m_1^2)}{ p_1^2-m_1^2} \frac{i}{p_2^2-m_2^2} \frac{i(-g^{\nu\xi}+p_3^\nu p_3^\xi/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[D^*D^*D^*]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{ (2\pi)^4}[iG_1\varepsilon_{i \mu\nu}] \bigl[G_2(2p_{3\rho}g_{\sigma\xi }+p_{2\sigma}g_{\xi\rho}-p_{3\xi} g_{\sigma\rho})\varepsilon_f^{*\rho}\bigr] \\ &{}\times\bigl[-e\varepsilon_{\gamma}^{*\theta}\bigl(g_{\phi\kappa}(p_{2\theta }+p_{1\theta})+g_{\kappa\theta} p_{1\phi} - g_{\phi\theta} p_{2\kappa}\bigr) + G_3 \varepsilon_{\gamma}^{*\theta}(g_{\kappa\theta} p_{1\phi} - g_{\phi \theta} p_{2\kappa})\bigr] \\ &{}\times\frac{i(-g^{\mu\kappa}+p_1^\mu p_1^\kappa/m_1^2)}{ p_1^2-m_1^2} \frac {i(-g^{\xi\phi}+p_2^\xi p_2^\phi/m_2^2)}{p_2^2-m_2^2} \frac{i(-g^{\nu\sigma}+p_3^\nu p_3^\sigma/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) . \end{aligned}$$
(A.7)

(ix) 1+−γ0−+ (h c γη c , \(h_{c}'\to \gamma\eta_{c}\), \(h_{c}'\to\gamma\eta_{c}'\))

$$\begin{aligned} \mathcal{M}_{[DD^*D]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{(2\pi)^4}[G_1\varepsilon _{i\mu}] \bigl[-G_2 (p_{f\rho}+p_{2\rho})\bigr] \bigl[e \varepsilon_\gamma^{*\theta }(p_{1\theta}+p_{2\theta}) \bigr] \\ &{}\times\frac{i}{p_1^2-m_1^2} \frac{i}{p_2^2-m_2^2} \frac{i(-g^{\mu\rho}+p_3^\mu p_3^\rho/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[DD^*D^*]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{ (2\pi)^4}[G_1\varepsilon_{i\mu}] \bigl[G_2\varepsilon_{\rho\sigma\xi\tau} p_2^\rho p_{f}^\tau\bigr] \bigl[G_3\varepsilon_{\theta\phi\kappa\lambda} p_\gamma ^\theta\varepsilon_\gamma^{*\phi} p_2^\kappa\bigr] \\ &{}\times\frac{i}{p_1^2-m_1^2} \frac {i(-g^{\sigma\lambda}+p_2^\sigma p_2^\lambda/m_2^2)}{p_2^2-m_2^2} \frac{i(-g^{\mu\xi}+p_3^\mu p_3^\xi/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[D^*DD^*]} =&\bigl(i^3\bigr)\int \frac{d^4p_2}{(2\pi )^4}[G_1\varepsilon_{i\mu}] \bigl[-G_2 (p_{f\rho}+p_{3\rho})\bigr] \\ &{}\times\bigl[-e\varepsilon_{\gamma}^{*\theta}\bigl(g_{\phi\kappa}(p_{2\theta }+p_{1\theta})+g_{\kappa\theta} p_{1\phi} - g_{\phi\theta} p_{2\kappa}\bigr) + G_3 \varepsilon_{\gamma}^{*\theta}(g_{\kappa\theta} p_{1\phi} - g_{\phi \theta} p_{2\kappa})\bigr] \\ &{}\times\frac{i(-g^{\mu\kappa}+p_1^\mu p_1^\kappa/m_1^2)}{ p_1^2-m_1^2} \frac{i(-g^{\rho\phi}+p_2^\rho p_2^\phi/m_2^2)}{p_2^2-m_2^2} \frac{i}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[D^*D^*D]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi )^4} \bigl[-G_1\varepsilon_{\mu\nu\alpha\beta} p_{i}^\nu \varepsilon_{i}^\alpha \bigr] \bigl[-G_2(p_{f\rho}+p_{2\rho}) \bigr] \bigl[G_3\varepsilon_{\theta\phi\kappa\lambda} p_\gamma^\theta \varepsilon_\gamma^{*\phi} p_1^\kappa\bigr] \\ &{}\times\frac{i(-g^{\mu\lambda}+p_1^\mu p_1^\lambda/m_1^2)}{ p_1^2-m_1^2} \frac{i}{p_2^2-m_2^2} \frac{i(-g^{\beta\rho}+p_3^\beta p_3^\rho/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) , \\ \mathcal{M}_{[D^*D^*D^*]} =&\bigl(i^3\bigr)\int\frac{d^4p_2}{(2\pi )^4} \bigl[-G_1\varepsilon_{\mu\nu\alpha\beta} p_{i}^\nu \varepsilon_{i}^\alpha \bigr] \bigl[G_2 \varepsilon_{\rho\sigma\xi\tau} p_2^\rho p_{f}^\tau \bigr] \\ &{}\times\bigl[-e\varepsilon_{\gamma}^{*\theta}\bigl(g_{\phi\kappa}(p_{2\theta }+p_{1\theta})+g_{\kappa\theta} p_{1\phi} - g_{\phi\theta} p_{2\kappa}\bigr) + G_3 \varepsilon_{\gamma}^{*\theta}(g_{\kappa\theta} p_{1\phi} - g_{\phi \theta} p_{2\kappa})\bigr] \\ &{}\times\frac{i(-g^{\mu\kappa}+p_1^\mu p_1^\kappa/m_1^2)}{ p_1^2-m_1^2} \frac{i(-g^{\sigma\phi}+p_2^\sigma p_2^\phi/m_2^2)}{p_2^2-m_2^2} \frac{i(-g^{\beta\xi}+p_3^\beta p_3^\xi/m_3^2)}{p_3^2-m_3^2}\prod _i\mathcal{F}_i\bigl(m_i,p_i^2 \bigr) . \end{aligned}$$
(A.8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, CW., Li, G., Liu, XH. et al. Effects of heavy meson loops on heavy quarkonium radiative transitions. Eur. Phys. J. C 73, 2482 (2013). https://doi.org/10.1140/epjc/s10052-013-2482-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2482-y

Keywords

Navigation