Skip to main content
Log in

Quarkonium interactions with (hot) hadronic matter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work, we present an updated study about the interactions of quarkonia with surrounding hadronic medium. The meson–meson interactions are described with a chiral effective Lagrangian within the framework of unitarized coupled channel amplitudes. In particular, we extend a previous work performed in the charmonium sector by calculating the cross-sections for \(\Upsilon \) scattering by light pseudoscalar mesons (\(\pi , K, \eta \)) and vector mesons (\(\rho , K^*, \omega \)). We evaluate the relevant channels and compare the results with existing literature. The analysis is completed by including the finite-temperature effects in the unitarized scattering amplitudes for both quarkonium and bottomonium sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data included in this manuscript are available on demand by contacting the corresponding author.]

References

  1. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)

    Article  ADS  Google Scholar 

  2. R. Rapp, D. Blaschke, P. Crochet, Prog. Part. Nucl. Phys. 65, 209 (2010)

    Article  ADS  Google Scholar 

  3. P. Braun-Munzinger, V. Koch, T. Schafer, J. Stachel, Phys. Rep. 621, 76 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Adams et al., STAR. Nucl. Phys. A 757, 102–183 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085. arXiv:nucl-ex/0501009 [nucl-ex]

    Article  ADS  Google Scholar 

  5. B. Alessandro et al., NA50. Eur. Phys. J. C 39, 335–345 (2005). https://doi.org/10.1140/epjc/s2004-02107-9. arXiv:hep-ex/0412036 [hep-ex]

    Article  Google Scholar 

  6. B.B. Abelev et al., ALICE Collaboration. Phys. Lett. B 734, 314 (2014)

  7. J. Adam et al., ALICE Collaboration. Phys. Lett. B 766, 212 (2017)

  8. S. Chatrchyan et al. [CMS], Phys. Rev. Lett. 109, 222301 (2012) [erratum: Phys. Rev. Lett. 120, 199903 (2018)]. https://doi.org/10.1103/PhysRevLett.109.222301arXiv:1208.2826 [nucl-ex]

  9. W. Zha, Z. Tang, Nucl. Part. Phys. Proc. 289, 83 (2017)

    Article  Google Scholar 

  10. C.-Y. Wong, E.S. Swanson, T. Barnes, Phys. Rev. C 62, 045201 (2000)

    Article  ADS  Google Scholar 

  11. C.-Y. Wong, E. S. Swanson, T. Barnes, Phys. Rev. C 65, 014903 (2001); [Erratum: Phys. Rev. C 65, 029901 (2002)]

  12. S.G. Matinyan, B. Muller, Phys. Rev. C 58, 2994 (1998)

    Article  ADS  Google Scholar 

  13. K.L. Haglin, Phys. Rev. C 61, 031902 (2000)

    Article  ADS  Google Scholar 

  14. P. Braun-Munzinger, K. Redlich, Eur. Phys. J. C 16, 519 (2000)

    Article  ADS  Google Scholar 

  15. Z. Lin, C.M. Ko, Phys. Rev. C 62, 034903 (2000)

    Article  ADS  Google Scholar 

  16. K.L. Haglin, C. Gale, Phys. Rev. C 63, 065201 (2001)

    Article  ADS  Google Scholar 

  17. Y. Oh, T. Song, S.H. Lee, Phys. Rev. C 63, 034901 (2001)

    Article  ADS  Google Scholar 

  18. T. Barnes, E.S. Swanson, C.-Y. Wong, X.-M. Xu, Phys. Rev. C 68, 014903 (2003)

    Article  ADS  Google Scholar 

  19. Y.-S. Oh, T.-S. Song, S.H. Lee, C.-Y. Wong, J. Korean Phys. Soc. 43, 1003 (2003)

    Google Scholar 

  20. F.O. Duraes, H. Kim, S.H. Lee, F.S. Navarra, M. Nielsen, Phys. Rev. C 68, 035208 (2003)

    Article  ADS  Google Scholar 

  21. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Nucl. Phys. A 741, 273 (2004)

    Article  ADS  Google Scholar 

  22. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Nucl. Phys. A 748, 209 (2005)

    Article  ADS  Google Scholar 

  23. F.O. Dures, S.H. Lee, F.S. Navarra, M. Nielsen, Phys. Lett. B 564, 97 (2003)

    Article  ADS  Google Scholar 

  24. A. Bourque, C. Gale, K.L. Haglin, Phys. Rev. C 70, 055203 (2004)

    Article  ADS  Google Scholar 

  25. F. Carvalho, F.O. Duraes, F.S. Navarra, M. Nielsen, Phys. Rev. C 72, 024902 (2005)

    Article  ADS  Google Scholar 

  26. T. Song, S.H. Lee, Phys. Rev. D 72, 034002 (2005)

    Article  ADS  Google Scholar 

  27. A. Capella, L. Bravina, E.G. Ferreiro, A.B. Kaidalov, K. Tywoniuk, E. Zabrodin, Eur. Phys. J. C 58, 437 (2008)

    Article  ADS  Google Scholar 

  28. W. Cassing, L. Kondratyuk, G. Lykasov, and M. Rz-janin, Phys. Lett. B 513, 1 (2001)

  29. O. Linnyk, E.L. Bratkovskaya, W. Cassing, Int. J. Mod. Phys. E 17, 1367 (2008)

    Article  ADS  Google Scholar 

  30. J. Zhou, X.-M. Xu, Phys. Rev. C 85, 064904 (2012)

    Article  ADS  Google Scholar 

  31. S. Mitra, S. Ghosh, S.K. Das, S. Sarkar, J.E. Alam, Nucl. Phys. A 951, 75 (2016)

    Article  ADS  Google Scholar 

  32. F.-R. Liu, S.-T. Ji, X.-M. Xu, J. Korean Phys. Soc. 69, 472 (2016)

    Article  ADS  Google Scholar 

  33. L.M. Abreu, K.P. Khemchandani, A.M. Torres, F.S. Navarra, M. Nielsen, Phys. Rev. C 97, 044902 (2018)

    Article  ADS  Google Scholar 

  34. M. Cleven, V.K. Magas, A. Ramos, Phys. Rev. C 96, 045201 (2017)

    Article  ADS  Google Scholar 

  35. L. M. Abreu, E. Cavalcanti and A. P. C. Malbouisson, Nucl. Phys. A 978, 107–122 (2018). https://doi.org/10.1016/j.nuclphysa.2018.08.001arXiv:1808.02115 [hep-ph]

  36. Z. w. Lin and C. M. Ko, Phys. Lett. B 503, 104–112 (2001) https://doi.org/10.1016/S0370-2693(01)00092-2arXiv:nucl-th/0007027 [nucl-th]

  37. L. M. Abreu, F. S. Navarra and M. Nielsen, Phys. Rev. C 101, 014906 (2020). https://doi.org/10.1103/PhysRevC.101.014906arXiv:1807.05081 [nucl-th]

  38. L. Roca, E. Oset, J. Singh, Phys. Rev. D 72, 014002 (2005)

    Article  ADS  Google Scholar 

  39. D. Gamermann, E. Oset, D. Strottman and M. J. Vicente Vacas, Phys. Rev. D 76, 074016 (2007). https://doi.org/10.1103/PhysRevD.76.074016arXiv:hep-ph/0612179 [hep-ph]

  40. D. Gamermann, E. Oset, Eur. Phys. J. A 33, 119 (2007)

    Article  ADS  Google Scholar 

  41. J.M. Dias, F. Aceti, E. Oset, Phys. Rev. D 91, 076001 (2015). https://doi.org/10.1103/PhysRevD.91.076001. arXiv:1410.1785 [hep-ph]

  42. R. Molina, D. Nicmorus and E. Oset, Phys. Rev. D 78, 114018 (2008). https://doi.org/10.1103/PhysRevD.78.114018arXiv:0809.2233 [hep-ph]

  43. L.M. Abreu, D. Cabrera, F.J. Llanes-Estrada, J.M. Torres-Rincon, Ann. Phys. (NY) 326, 2737 (2011)

  44. L.M. Abreu, D. Cabrera, J.M. Torres-Rincon, Phys. Rev. D 87, 034019 (2013)

    Article  ADS  Google Scholar 

  45. R. Gao, Z.H. Guo, J.Y. Pang, Phys. Rev. D 100(11), 114028 (2019). https://doi.org/10.1103/PhysRevD.100.114028. arXiv:1907.01787 [hep-ph]

    Article  ADS  Google Scholar 

  46. J. Weinstein, N. Isgur, Phys. Rev. D 41, 2236 (1990)

    Article  ADS  Google Scholar 

  47. G. Janssen, B.C. Pearce, K. Holinde, J. Speth, Phys. Rev. D 52, 2690 (1995)

    Article  ADS  Google Scholar 

  48. J. Oller, E. Oset, Nucl. Phys. A 620, 438 (1997)

    Article  ADS  Google Scholar 

  49. J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D 59, 074001 (1999)

    Article  ADS  Google Scholar 

  50. A. Bazavov, C. Bernard, N. Brown, C. Detar, A.X. El-Khadra, E. Gámiz, S. Gottlieb, U.M. Heller, J. Komijani, A.S. Kronfeld et al., Phys. Rev. D 98, 074512 (2018). https://doi.org/10.1103/PhysRevD.98.074512. arXiv:1712.09262 [hep-lat]

  51. S. Aoki, Y. Aoki, D. Becirevic, C. Bernard, T. Blum, G. Colangelo, M. Della Morte, P. Dimopoulos, S. Dürr and H. Fukaya, et al. Eur. Phys. J. C 77, no.2, 112 (2017). https://doi.org/10.1140/epjc/s10052-016-4509-7arXiv:1607.00299 [hep-lat]

  52. L. M. Abreu, K. P. Khemchandani, A. Martínez Torres, F. S. Navarra, M. Nielsen and A. L. Vasconcellos, Phys. Rev. D 95, no.9, 096002 (2017). https://doi.org/10.1103/PhysRevD.95.096002arXiv:1704.08781 [hep-ph]

  53. J. Zhou and X. M. Xu, Phys. Rev. C 85, 064904 (2012). https://doi.org/10.1103/PhysRevC.85.064904arXiv:1206.2440 [hep-ph]

  54. S.T. Ji, Z.Y. Shen, X.M. Xu, J. Phys. G 42, 095110 (2015). https://doi.org/10.1088/0954-3899/42/9/095110. arXiv:1507.04262 [hep-ph]

  55. M. Cleven, V. K. Magas and A. Ramos, Phys. Rev. C 96 045201 (2017). https://doi.org/10.1103/PhysRevC.96.045201

  56. X.W. Gu, C.G. Duan, Z.H. Guo, Phys. Rev. D 98, 034007 (2018). https://doi.org/10.1103/PhysRevD.98.034007. arXiv:1803.07284 [hep-ph]

  57. G. Montaña et al. Phys. Lett. B 806, 135464 (2020). https://doi.org/10.1016/j.physletb.2020.135464

  58. M. Le Bellac, Thermal field theory (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  59. A. Schenk, Phys. Rev. D 47, 5138 (1993). https://doi.org/10.1103/PhysRevD.47.5138

    Article  ADS  Google Scholar 

  60. A. Gómez Nicola, R. Torres Andrés, Phys. Rev. D 89, 116009 (2014). https://doi.org/10.1103/PhysRevD.89.116009arXiv:1404.2746 [hep-ph]

  61. M. Cheng, S. Datta, A. Francis, J. van der Heide, C. Jung, O. Kaczmarek, F. Karsch, E. Laermann, R.D. Mawhinney, C. Miao et al., Eur. Phys. J. C 71, 1564 (2011). https://doi.org/10.1140/epjc/s10052-011-1564-y. arXiv:1010.1216 [hep-lat]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Cavalcanti for support and discussions. The authors would like to thank the Brazilian funding agencies CNPq (Contracts No. 308088/2017-4 and No. 400546/2016-7) and FAPESB (Contract No. INT0007/2016) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano M. Abreu.

Additional information

Communicated by Che-Ming Ko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, L.M., Vieira, H.P.L. Quarkonium interactions with (hot) hadronic matter. Eur. Phys. J. A 57, 163 (2021). https://doi.org/10.1140/epja/s10050-021-00478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00478-9

Navigation