Skip to main content
Log in

Differential forms and κ-Minkowski spacetime from extended twist

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We analyze bicovariant differential calculus on κ-Minkowski spacetime. It is shown that corresponding Lorentz generators and noncommutative coordinates compatible with bicovariant calculus cannot be realized in terms of commutative coordinates and momenta. Furthermore, κ-Minkowski space and NC forms are constructed by twist related to a bicrossproduct basis. It is pointed out that the consistency condition is not satisfied. We present the construction of κ-deformed coordinates and forms (super-Heisenberg algebra) using extended twist. It is compatible with bicovariant differential calculus with κ-deformed \(\mathfrak{igl}(4)\)-Hopf algebra. The extended twist leading to κ-Poincaré-Hopf algebra is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For Hopf-algebroid structure also see [5456], and [29].

  2. Greek indices (μ,ν,…) are from 0 to 3, and Latin indices (i,j,…) from 1 to 3. Summation over repeated indices is assumed.

  3. Here the superscript (o) denotes that the Lorentz generators and NC coordinates \(\hat{x}\) are realized only in terms of undeformed x μ and μ .

  4. Sitarz denotes this action with ▷.

  5. The correspondence between algebra in [12] and (22) is \(\frac{1}{\kappa }=-ia_{0}\), \(x_{\mu}=\hat{x}_{\mu}\), \(\mathrm {d}{x}_{\mu}=\hat{\xi}_{\mu}\), ϕ=ϕ, \(N_{i}=\hat{M}_{0i}\), and \(M_{i}=\epsilon_{ijk}\hat{M}_{jk}\).

  6. The algebra of undeformed operators is defined in Sect. 2 and for ▶ action we have \(x_{\mu}\blacktriangleright1=\hat {x}_{\mu}\), \(\xi_{\mu}\blacktriangleright1=\hat{\xi}_{\mu}\), μ ▶1=0 and q μ ▶1=0.

  7. For more details see [28].

  8. The algebra \(\hat{\mathcal{SA}}\) is generated by \(\hat {x}_{\mu}\), \(\hat{\xi}_{\mu}\) and ϕ, and the algebra \(\mathcal{SA}^{\star}\) is generated by x μ and ξ μ but with ⋆-multiplication. The star-product is defined by \(f(x,\xi)\star g(x,\xi )=\hat{f}(\hat{x},\hat{\xi})\hat{g}(\hat{x},\hat{\xi})\triangleright 1\).

References

  1. A. Connes, Noncommutative Geometry (Academic Press, New York, 1994)

    MATH  Google Scholar 

  2. S. Doplicher, K. Fredenhagen, J.E. Roberts, Phys. Lett. B 331(1), 39 (1994)

    MathSciNet  ADS  Google Scholar 

  3. S. Doplicher, K. Fredenhagen, J. E. Roberts, The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172(1), 187–220 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. S. Majid, Foundations of Quantum Group Theory (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  5. G. Landi, An Introduction to Noncommutative Spaces and Their Geometries. Lecture Notes in Physics, vol. 51 (1997). arXiv:hep-th/9701078v1

    MATH  Google Scholar 

  6. P. Aschieri, F. Lizzi, P. Vitale, Twisting all the way: from classical to quantum mechanics. Phys. Rev. D 77, 025037 (2008). arXiv:0708.3002v2

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Chaichian, P. Kulish, K. Nishijima, A. Tureanu, On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT. Phys. Lett. B 604, 98–102 (2004). arXiv:hep-th/0408069

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. J. Lukierski, A. Nowicki, H. Ruegg, V.N. Tolstoy, Q-deformation of Poincaré algebra. Phys. Lett. B 264, 331 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Lukierski, A. Nowicki, H. Ruegg, New quantum Poincaré algebra, and κ-deformed field theory. Phys. Lett. B 293, 344 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Lukierski, H. Ruegg, Quantum κ-Poincaré in any dimension. Phys. Lett. B 329, 189 (1994). arXiv:hep-th/9310117

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Majid, H. Ruegg, Bicrossproduct structure of κ-Poincaré group and noncommutative geometry. Phys. Lett. B 334, 348 (1994). arXiv:hep-th/9404107

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A. Sitarz, Noncommutative differential calculus on the kappa-Minkowski space. Phys. Lett. B 349, 42 (1995). arXiv:hep-th/9409014

    Article  MathSciNet  ADS  Google Scholar 

  13. C. Gonera, P. Kosinski, P. Maslanka, Differential calculi on quantum Minkowski space. J. Math. Phys. 37, 5820 (1996). arXiv:q-alg/9602007

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. J. Kowalski-Glikman, S. Nowak, Double special relativity theories as different bases of kappa-Poincaré algebra. Phys. Lett. B 539, 126 (2002). hep-th/0203040

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. S. Meljanac, M. Stojić, New realizations of Lie algebra kappa-deformed Euclidean space. Eur. Phys. J. C 47, 531 (2006)

    Article  ADS  MATH  Google Scholar 

  16. S. Meljanac, S. Krešić-Jurić, M. Stojić, Covariant realizations of kappa-deformed space. Eur. Phys. J. C 51, 229 (2007)

    Article  ADS  MATH  Google Scholar 

  17. S. Meljanac, A. Samsarov, M. Stojić, K.S. Gupta, Kappa-Minkowski space-time and the star product realizations. Eur. Phys. J. C 53, 295 (2008). arXiv:0705.2471

    Article  ADS  MATH  Google Scholar 

  18. S. Halliday, R.J. Szabo, Noncommutative field theory on homogeneous gravitational waves. J. Phys. A 39, 5189–5226 (2006). arXiv:hep-th/0602036

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. S. Meljanac, S. Kresic-Juric, Generalized kappa-deformed spaces, star-products, and their realizations. J. Phys. A 41, 235203 (2008). arXiv:0804.3072

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Meljanac, S. Krešić-Jurić, Noncommutative differential forms on the kappa-deformed space. J. Phys. A, Math. Theor. 42, 365204 (2009). arXiv:0812.4571

    Article  Google Scholar 

  21. S. Meljanac, S. Krešić-Jurić, Differential structure on κ-Minkowski space, and κ-Poincaré algebra. Int. J. Mod. Phys. A 26(20), 3385 (2011). arXiv:1004.4547

    Article  ADS  MATH  Google Scholar 

  22. H.C. Kim, Y. Lee, C. Rim, J.H. Yee, Differential structure on the κ-Minkowski spacetime from twist. Phys. Lett. B 671, 398 (2009). arXiv:0808.2866 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  23. J.G. Bu, J.H. Yee, H.C. Kim, Differential structure on κ-Minkowski spacetime realized as module of twisted Weyl algebra. Phys. Lett. B 679, 486 (2009). arXiv:0903.0040v2

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Borowiec, A. Pachol, κ-Minkowski spacetime as the result of Jordanian twist deformation. Phys. Rev. D 79, 045012 (2009). arXiv:0812.0576

    Article  ADS  Google Scholar 

  25. A. Borowiec, A. Pachol, κ-Minkowski spacetimes and DSR algebras: fresh look and old problems. SIGMA 6, 086 (2010). arXiv:1005.4429

    MathSciNet  Google Scholar 

  26. D. Kovacevic, S. Meljanac, Kappa-Minkowski spacetime, kappa-Poincaré Hopf algebra and realizations. J. Phys. A, Math. Theor. 45, 135208 (2012). arXiv:1110.0944

    Article  MathSciNet  ADS  Google Scholar 

  27. D. Kovacevic, S. Meljanac, A. Pachol, R. Štrajn, Generalized kappa-Poincare algebras, Hopf algebras and kappa-Minkowski spacetime. Phys. Lett. B 711, 122 (2012). arXiv:1202.3305 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Meljanac, S. Krešić-Jurić, R. Štrajn, Differential algebras on kappa-Minkowski space and action of the Lorentz algebra. Int. J. Mod. Phys. A 27(10), 1250057 (2012). arXiv:1203.2762

    Article  ADS  Google Scholar 

  29. S. Meljanac, A. Samsarov, R. Štrajn, Kappa-deformation of Heisenberg algebra and coalgebra; generalized Poincaré algebras and R-matrix. J. High Energy Phys. 08, 127 (2012). arXiv:1204.4324

    Article  ADS  Google Scholar 

  30. G. Amelino-Camelia, Testable scenario for relativity with minimum-length. Phys. Lett. B 510, 255 (2001). arXiv:hep-th/0012238

    Article  ADS  MATH  Google Scholar 

  31. G. Amelino-Camelia, Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35 (2002). arXiv:gr-qc/0012051

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. J. Kowalski-Glikman, S. Nowak, Non-commutative space-time of doubly special relativity theories. Int. J. Mod. Phys. D 12, 299 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. J. Kowalski-Glikman, Introduction to doubly special relativity. Lect. Notes Phys. 669, 131 (2005). hep-th/0405273v1

    Article  ADS  Google Scholar 

  34. P. Kosinski, J. Lukierski, P. Maslanka, Local D=4 field theory on κ-deformed Minkowski space. Phys. Rev. D 62, 025004 (2000). arXiv:hep-th/9902037

    Article  MathSciNet  ADS  Google Scholar 

  35. M. Dimitrijevic, L. Jonke, L. Moller, E. Tsouchnika, J. Wess, M. Wohlgenannt, Deformed field theory on kappa-spacetime. Eur. Phys. J. C 31, 129–138 (2003). arXiv:hep-th/0307149

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. L. Freidel, J. Kowalski-Glikman, S. Nowak, Field theory on κ-Minkowski space revisited: Noether charges and breaking of Lorentz symmetry. Int. J. Mod. Phys. A 23, 2687 (2008). arXiv:0706.3658

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. M. Daszkiewicz, J. Lukierski, M. Woronowicz, Towards quantum noncommutative κ-deformed field theory. Phys. Rev. D 77, 105007 (2008). arXiv:0708.1561 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  38. H.C. Kim, Y. Lee, C. Rim, J.H. Yee, Scalar field theory in κ-Minkowski spacetime from twist. J. Math. Phys. 50, 102304 (2009). arXiv:0901.0049 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  39. T.R. Govindarajan, K.S. Gupta, E. Harikumar, S. Meljanac, D. Meljanac, Deformed oscillator algebras and QFT in the κ-Minkowski spacetime. Phys. Rev. D 80, 025014 (2009). arXiv:0903.2355

    Article  ADS  Google Scholar 

  40. S. Meljanac, A. Samsarov, Scalar field theory on kappa-Minkowski spacetime and translation and Lorentz invariance. Int. J. Mod. Phys. A 26, 1439 (2011). arXiv:1007.3943

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. S. Meljanac, A. Samsarov, J. Trampetic, M. Wohlgenannt, Scalar field propagation in the phi 4 kappa-Minkowski model. J. High Energy Phys. 1112, 010 (2011). arXiv:1111.5553

    Article  ADS  Google Scholar 

  42. E. Harikumar, Maxwell’s equations on the κ-Minkowski spacetime and electric–magnetic duality. Europhys. Lett. 90, 21001 (2010). arXiv:1002.3202v3

    Article  ADS  Google Scholar 

  43. E. Harikumar, T. Juric, S. Meljanac, Electrodynamics on κ-Minkowski space-time. Phys. Rev. D 84, 085020 (2011). arXiv:1107.3936

    Article  ADS  Google Scholar 

  44. M. Dimitrijevic, L. Jonke, A Twisted look on kappa-Minkowski: U(1) gauge theory. J. High Energy Phys. 1112, 080 (2011). arXiv:1107.3475

    Article  MathSciNet  ADS  Google Scholar 

  45. A. Borowiec, K.S. Gupta, S. Meljanac, A. Pachoł, Constraints on the quantum gravity scale from kappa-Minkowski spacetime. Europhys. Lett. 92, 20006 (2010). arXiv:0912.3299

    Article  ADS  Google Scholar 

  46. S. Majid, Newtonian gravity on quantum spacetime. arXiv:1109.6190v1

  47. E. Harikumar, T. Juric, S. Meljanac, Geodesic equation in k-Minkowski spacetime. Phys. Rev. D 86, 045002 (2012). arXiv:1203.1564 [hep-th]

    Article  ADS  Google Scholar 

  48. M. Arzano, A. Marciano, Symplectic geometry and Noether charges for Hopf algebra space-time symmetries. Phys. Rev. D 76, 125005 (2007). arXiv:hep-th/0701268

    Article  MathSciNet  ADS  Google Scholar 

  49. M. Daszkiewicz, J. Lukierski, M. Woronowicz, κ-deformed statistics and classical fourmomentum addition law. Mod. Phys. Lett. A 23, 653 (2008). arXiv:hep-th/0703200

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. C.A.S. Young, R. Zegers, Covariant particle statistics and intertwiners of the kappa-deformed Poincare algebra. Nucl. Phys. B 797, 537 (2008). arXiv:0711.2206

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. C.A.S. Young, R. Zegers, Covariant particle exchange for kappa-deformed theories in 1+1 dimensions. Nucl. Phys. B 804, 342 (2008). arXiv:0803.2659

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. T.R. Govindarajan, K.S. Gupta, E. Harikumar, S. Meljanac, D. Meljanac, Twisted statistics in κ-Minkowski spacetime. Phys. Rev. D 77, 105010 (2008). arXiv:0802.1576

    Article  MathSciNet  ADS  Google Scholar 

  53. K.S. Gupta, S. Meljanac, A. Samsarov, Quantum statistics and noncommutative black holes. Phys. Rev. D 85, 045029 (2012). arXiv:1108.0341 [hep-th]

    Article  ADS  Google Scholar 

  54. J.H. Lu, Hopf algebroids and quantum groupoids. Int. J. Math. 7, 539–581 (1996).

    Article  Google Scholar 

  55. P. Xu, Commun. Math. Phys. 216, 539–581 (2001).

    Article  ADS  MATH  Google Scholar 

  56. G. Bohm, Hopf Algebroids. Handbook of Algebra (2008)

    Google Scholar 

  57. S.L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys. 122, 125 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. T. Jurić, S. Meljanac, R. Štrajn, κ-Poincare–Hopf algebra and Hopf algebroid structure of phase space from twist. arXiv:1303.0994 [hep-th]

  59. P.D. Jarvis, Hidden supersymmetry a no superpartner theorem for representations of deformed conformal superalgebra. J. Phys. A, Math. Theor. 45, 322001 (2012). arXiv:1106.4881 [hep-th]

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Peter Schupp for useful comments. This work was supported by the Ministry of Science and Technology of the Republic of Croatia under contract No. 098-0000000-2865. R.Š. gratefully acknowledges support from the DFG within the Research Training Group 1620 “Models of Gravity”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tajron Jurić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurić, T., Meljanac, S. & Štrajn, R. Differential forms and κ-Minkowski spacetime from extended twist. Eur. Phys. J. C 73, 2472 (2013). https://doi.org/10.1140/epjc/s10052-013-2472-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2472-0

Keywords

Navigation