Skip to main content
Log in

One loop field strengths of charges and dipoles on a locally de Sitter background

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We use the one loop vacuum polarization induced by scalar quantum electrodynamics to compute the electric and magnetic fields of point charges and magnetic dipoles on a locally de Sitter background. Our results are consistent with the physical picture of an inflating universe filling with a vast sea of charged particles as more and more virtual infrared scalar are ripped out of the vacuum. One consequence is that vacuum polarization quickly becomes nonperturbatively strong. Our computation employs the Schwinger–Keldysh effective field equations and is done in flat, conformal coordinates. Results are also obtained for static coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The earliest work was restricted to outright particle production, which ignores the vacuum polarization effect from virtual particles which persist longer in an expanding universe but do, eventually, disappear. The first quantitative studies to include both effects were computations of the expectation values of scalar stress tensors [6, 7].

  2. One might wonder if there is any advantage to employing a covariant representation based on covariant derivatives and de Sitter invariant basis tensors. However, a systematic investigation of this formalism reveals that it is cumbersome and that it obscures the essential physics [36]. The procedure for converting our noncovariant—but simple—representation (56) to the complicated and counter-intuitive covariant representation can be found in [37].

  3. It should be noted that quantum corrections to the forces mediated by scalar fields on de Sitter have been studied extensively [6567].

References

  1. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, 1995)

    Google Scholar 

  2. E. Schrödinger, Physica 6, 899 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  3. L. Parker, Phys. Rev. Lett. 21, 562 (1968)

    Article  ADS  Google Scholar 

  4. L. Parker, Phys. Rev. 183, 1057 (1969)

    Article  ADS  MATH  Google Scholar 

  5. L. Parker, Phys. Rev. D 3, 346 (1971)

    Article  ADS  Google Scholar 

  6. Ya.B. Zeldovich, A.A. Starobinsky, Sov. Phys. JETP 34, 1159 (1972)

    ADS  Google Scholar 

  7. L. Parker, S.A. Fulling, Phys. Rev. D 9, 341 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  8. L.H. Ford, L. Parker, Phys. Rev. D 16, 1601 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  9. L.P. Grishchuk, Sov. Phys. JETP 40, 409 (1975)

    ADS  Google Scholar 

  10. A.A. Starobinsky, JETP Lett. 30, 682 (1979)

    ADS  Google Scholar 

  11. V.F. Mukhanov, G.V. Chibisov, JETP Lett. 33, 532 (1981)

    ADS  Google Scholar 

  12. G. Hinshaw et al. arXiv:1212.5226

  13. K.T. Story et al. arXiv:1210.7231

  14. E.O. Kahya, V.K. Onemli, R.P. Woodard, Phys. Lett. B 694, 101 (2010). arXiv:1006.3999

    Article  ADS  Google Scholar 

  15. A.D. Dolgov, Phys. Rev. D 48, 2499 (1993)

    Article  ADS  Google Scholar 

  16. A.C. Davis, K. Dimopoulos, T. Prokopec, O. Törnkvist, Phys. Lett. B 501, 165 (2001). astro-ph/0007214

    Article  ADS  MATH  Google Scholar 

  17. K. Dimopoulos, T. Prokopec, O. Törnkvist, A.C. Davis, Phys. Rev. D 65, 063505 (2002). astro-ph/0108093

    Article  ADS  Google Scholar 

  18. T. Prokopec, R.P. Woodard, Am. J. Phys. 72, 60 (2004). astro-ph/0303358

    Article  ADS  Google Scholar 

  19. T. Prokopec, O. Törnkvist, R.P. Woodard, Phys. Rev. Lett. 89, 101301 (2002). astro-ph/0205331

    Article  ADS  Google Scholar 

  20. T. Prokopec, O. Törnkvist, R.P. Woodard, Ann. Phys. 303, 251 (2003). gr-qc/0205130

    Article  ADS  MATH  Google Scholar 

  21. T. Prokopec, R.P. Woodard, Ann. Phys. 312, 1 (2004). gr-qc/0310056

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. T. Prokopec, N.C. Tsamis, R.P. Woodard, Ann. Phys. 323, 1324 (2008). arXiv:0707.0847

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. J. Schwinger, J. Math. Phys. 2, 407 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. K.T. Mahanthappa, Phys. Rev. 126, 329 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. P.M. Bakshi, K.T. Mahanthappa, J. Math. Phys. 4, 1 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. P.M. Bakshi, K.T. Mahanthappa, J. Math. Phys. 4, 12 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  27. L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1965)

    MathSciNet  Google Scholar 

  28. K.C. Chou, Z.B. Su, B.L. Hao, L. Yu, Phys. Rep. 118, 1 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  29. R.D. Jordan, Phys. Rev. D 33, 444 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  30. E. Calzetta, B.L. Hu, Phys. Rev. D 35, 495 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  31. K.E. Leonard, R.P. Woodard, Phys. Rev. D 85, 104048 (2012). arXiv:1202.5800

    Article  ADS  Google Scholar 

  32. S. Park, R.P. Woodard, Class. Quantum Gravity 27, 245008 (2010). arXiv:1007.2662

    Article  MathSciNet  ADS  Google Scholar 

  33. N.C. Tsamis, R.P. Woodard, Ann. Phys. 238, 1 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  34. L.H. Ford, R.P. Woodard, Class. Quantum Gravity 22, 1637 (2005). gr-qc/0411003

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. E.O. Kahya, V.K. Onemli, R.P. Woodard, Phys. Rev. D 81, 023508 (2010). arXiv:0904.4811

    Article  ADS  Google Scholar 

  36. K.E. Leonard, T. Prokopec, R.P. Woodard, Phys. Rev. D 87, 044030 (2013). arXiv:1210.6968

    Article  ADS  Google Scholar 

  37. K.E. Leonard, T. Prokopec, R.P. Woodard, J. Math. Phys. 54, 032301 (2013). arXiv:1211.1342

    Article  ADS  Google Scholar 

  38. T. Brunier, V.K. Onemli, R.P. Woodard, Class. Quantum Gravity 22, 59 (2005). gr-qc/0408080

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. E.O. Kahya, V.K. Onemli, Phys. Rev. D 76, 043512 (2007). gr-qc/0612026

    Article  ADS  Google Scholar 

  40. T. Prokopec, R.P. Woodard, J. High Energy Phys. 0310, 059 (2003). astro-ph/0309593

    Article  ADS  Google Scholar 

  41. B. Garbrecht, T. Prokopec, Phys. Rev. D 73, 064036 (2006). gr-qc/0602011

    Article  ADS  Google Scholar 

  42. S. Park, R.P. Woodard, Phys. Rev. D 84, 124058 (2011). arXiv:1109.4187

    Article  ADS  Google Scholar 

  43. S.P. Miao, R.P. Woodard, Class. Quantum Gravity 23, 1721 (2006). gr-qc/0511140

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. S.P. Miao, R.P. Woodard, Phys. Rev. D 74, 024021 (2006). gr-qc/0603135

    Article  ADS  Google Scholar 

  45. S.P. Miao, R.P. Woodard, Class. Quantum Gravity 25, 145009 (2008). arXiv:0803.2377

    Article  MathSciNet  ADS  Google Scholar 

  46. S.P. Miao, Phys. Rev. D 86, 104051 (2012). arXiv:1207.5241

    Article  ADS  Google Scholar 

  47. S.P. Miao, Phys. Rev. D 86, 104051 (2012). arXiv:0705.0767

    Article  ADS  Google Scholar 

  48. E.O. Kahya, R.P. Woodard, Phys. Rev. D 76, 124005 (2007). arXiv:0709.0536

    Article  MathSciNet  ADS  Google Scholar 

  49. E.O. Kahya, R.P. Woodard, Phys. Rev. D 77, 084012 (2008). arXiv:0710.5282

    Article  MathSciNet  ADS  Google Scholar 

  50. D.M. Capper, Nuovo Cimento A 25, 29 (1975)

    Article  ADS  Google Scholar 

  51. M.J. Duff, Phys. Rev. D 9, 1837 (1974)

    Article  ADS  Google Scholar 

  52. A. Campos, E. Verdaguer, Phys. Rev. D 49, 1816 (1994). gr-qc/9307027

    Article  Google Scholar 

  53. D.A.R. Dalvit, F.D. Mazzitelli, Phys. Rev. D 50, 1001 (1994). gr-qc/9402003

    Article  ADS  Google Scholar 

  54. H. Hamber, S. Liu, Phys. Lett. B 357, 51 (1995). hep-th/9505182

    Article  ADS  Google Scholar 

  55. F.C. Lombardo, F.D. Mazzitelli, Phys. Rev. D 55, 3889 (1997). gr-qc/9609073

    Article  ADS  Google Scholar 

  56. R. Martin, E. Verdaguer, Phys. Rev. D 61, 124024 (2000). gr-qc/0001098

    Article  MathSciNet  ADS  Google Scholar 

  57. M.J. Duff, J.T. Liu, Phys. Rev. Lett. 85, 2052 (2000). hep-th/0003237

    Article  MathSciNet  ADS  Google Scholar 

  58. A. Satz, F.D. Mazzitelli, E. Alvarez, Phys. Rev. D 71, 064001 (2005). gr-qc/0411046

    Article  ADS  Google Scholar 

  59. A.F. Radkowski, Ann. Phys. 56, 319 (1970)

    Article  ADS  Google Scholar 

  60. J. Schwinger, Phys. Rev. 173, 1264 (1968)

    Article  ADS  Google Scholar 

  61. N.E.J. Bjerrum-Bohr, Phys. Rev. D 66, 084023 (2002). hep-th/0206236

    Article  ADS  Google Scholar 

  62. S.P. Robinson, F. Wilczek, Phys. Rev. Lett. 96, 231601 (2006). hep-th/0509050

    Article  ADS  Google Scholar 

  63. J.E. Daum, U. Harst, M. Reuter, J. High Energy Phys. 1001, 084 (2010). arXiv:0910.4938

    Article  ADS  Google Scholar 

  64. U. Harst, M. Reuter, J. High Energy Phys. 1105, 119 (2011). arXiv:1101.6007

    Article  ADS  Google Scholar 

  65. G.M. Shore, Ann. Phys. 128, 376 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  66. A.A. Starobinsky, Phys. Lett. B 117, 175 (1982)

    Article  ADS  Google Scholar 

  67. A.O. Barvinsky, A.Yu. Kamenshchik, Nucl. Phys. B 532, 339 (1998)

    Article  ADS  Google Scholar 

  68. N.C. Tsamis, R.P. Woodard, Phys. Rev. D 54, 2621 (1996). hep-ph/9602317

    Article  ADS  Google Scholar 

  69. S. Park, R.P. Woodard, Phys. Rev. D 83, 084049 (2011). arXiv:1101.5804

    Article  ADS  Google Scholar 

  70. K.E. Leonard, R.P. Woodard. arXiv:1304.7265

  71. H. Kitamoto, Y. Kitazawa. arXiv:1203.0391

  72. H. Kitamoto, Y. Kitazawa. arXiv:1204.2876

Download references

Acknowledgements

This work was partially supported by the master student exchange program at the École Polytechnique Fédérale de Lausanne, by NSF grants PHY-0855021, PHY-1205591, and by the Institute for Fundamental Theory at the University of Florida. We are grateful to M. Shaposhnikov for many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Woodard.

Appendices

Appendix A: Integrals from Sect. 4.2

The following integrals (times \(-\alpha/\pi\times F^{(0)}_{0i}\)) sum to give our result (98) for \(F^{1G}_{0i}\) in Sect. 4.2:

(A.1)
(A.2)
(A.3)
(A.4)
(A.5)
(A.6)
(A.7)
(A.8)
(A.9)
(A.10)

The integrands of (A.6), (A.7) and (A.9), (A.10) diverge at x′=−η, which results in the ill-defined factors of ±ln(1−aHx). However, these divergences cancel between (A.6), (A.7) and between (A.9), (A.10), as do the problematic logarithms.

Appendix B: Integrals from Sect. 4.3

We begin with some general comments. The expression (135) we must evaluate is a double integration over three regions which can be termed “I”, “II” and “III”,

(B.1)

Each of these double integrals takes the form

$$ \int_{B}^{A} d\eta' \int _{D(\eta')}^{C(\eta')} dx' , $$
(B.2)

where the various limits are

(B.3)
(B.4)
(B.5)
(B.6)

Of course the integrand is of crucial importance. From expressions (125) and (126) we see that xJ GK(η,x) can be broken up into seven components,

(B.7)
(B.8)
(B.9)
(B.10)
(B.11)
(B.12)
(B.13)

In each case the x′ integration can be expressed in terms of elementary functions. For \(\mathcal{I}_{10}\) the η′ integration also results in elementary functions. \(\mathcal{I}_{2}\) and \(\mathcal{I}_{9}\) give polylogarithms, more about which later. The remaining integrands—\(\mathcal{I}_{1}\), \(\mathcal{I}_{34}\), \(\mathcal{I}_{56}\) and \(\mathcal{I}_{78}\)—all take the form of a2 times the x′ derivative of an elementary function of η′ and x′. For these integrands the best strategy is partially integrate on η′ after having performed the x′ integration,

(B.14)
(B.15)

It turns out that the surface terms in (B.15) cancel between the three regions,

(B.16)
(B.17)
(B.18)

Integrands \(\mathcal{I}_{2}\) and \(\mathcal{I}_{9}\), and the volume terms (B.15) from \(\mathcal{I}_{1}\), \(\mathcal{I}_{34}\), \(\mathcal{I}_{56}\) and \(\mathcal{I}_{78}\), all give rise to η′ integrations of the form 1/η′ times logarithms. Integrations of this form result in polylogarithms, of which the two we require are

$$ \begin{aligned} \lefteqn{\mathrm{Li}_2(z) \equiv-\int_0^z dt \frac{\ln(1 - t)}{t} ,}\\\lefteqn{\mathrm{Li}_3(z) \equiv\int _0^z dt \frac{ \mathrm{Li}_2(t)}{t} .} \end{aligned} $$
(B.19)

Both are real for z≤1. Their expansions for small z and for large −z are

(B.20)
(B.21)

Care must be taken to arrange things so that the arguments of Li2(z) and Li3(z) lie in the range z≤1 for which the function is real. This is simple to accomplish for the dilogarithm Li2(z) but it requires some effort for Li3(z). Li3(z) derives exclusively from \(\mathcal{I}_{2}\), when changing to dimensionless variables converts the η′ integration to either ∫dt/t×ln2(1−t) or ∫dt/t×ln(t)ln(1−t). The final integral only makes sense for 0≤t≤1 so it involves no choices,

$$ \int dt \frac{\ln(t) \ln(1 - t)}{t} = \mathrm{Li}_3(t) - \ln(t) \mathrm{Li}_2(t) . $$
(B.22)

If the dimensionless parameter t lies in the range 0≤t≤1 we write the first integral as

(B.23)

However, if t<0 we must use Landen’s identity to re-express it as

(B.24)

It can happen that the appropriate choice to make between (B.23) and (B.24) depends upon whether x or r=ax is held fixed for large a, in which case we report the choice appropriate for holding x fixed at large a.

Our results for the seven integrals are

(B.25)
(B.26)
(B.27)
(B.28)
(B.29)
(B.30)
(B.31)

It remains just to give the expansions for large a at fixed x, and at fixed r=ax. In both cases the leading term goes like ln(a). For fixed x we find

(B.32)
(B.33)
(B.34)
(B.35)
(B.36)
(B.37)
(B.38)

At fixed r the results are

(B.39)
(B.40)
(B.41)
(B.42)
(B.43)
(B.44)
(B.45)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degueldre, H., Woodard, R.P. One loop field strengths of charges and dipoles on a locally de Sitter background. Eur. Phys. J. C 73, 2457 (2013). https://doi.org/10.1140/epjc/s10052-013-2457-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2457-z

Keywords

Navigation