Skip to main content
Log in

Neutrino assisted gauge mediation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Recent observation shows that the Higgs mass is at around 125 GeV while the prediction of the minimal supersymmetric standard model is below 120 GeV for stop mass lighter than 2 TeV unless the top squark has a maximal mixing. We consider the right-handed neutrino supermultiplets as messengers in addition to the usual gauge mediation to obtain sizeable trilinear soft parameters A t needed for the maximal stop mixing. Neutrino messengers can explain the observed Higgs mass for stop mass around 1 TeV. Neutrino assistance can also generate charged lepton flavor violation including μ as a possible signature of the neutrino messengers. We consider the S 4 discrete flavor model and show the relation of the charged lepton flavor violation, θ 13 of neutrino oscillation and the muon’s g−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  3. M. Dine, A.E. Nelson, Phys. Rev. D 48, 1277 (1993). hep-ph/9303230

    Article  ADS  Google Scholar 

  4. M. Dine, A.E. Nelson, Y. Shirman, Phys. Rev. D 51, 1362 (1995). hep-ph/9408384

    Article  ADS  Google Scholar 

  5. M. Dine, A.E. Nelson, Y. Nir, Y. Shirman, Phys. Rev. D 53, 2658 (1996). hep-ph/9507378

    Article  ADS  Google Scholar 

  6. G.F. Giudice, R. Rattazzi, Phys. Rep. 322, 419 (1999). hep-ph/9801271

    Article  ADS  Google Scholar 

  7. M.A. Ajaib, I. Gogoladze, F. Nasir, Q. Shafi, Phys. Lett. B 713, 462 (2012). arXiv:1204.2856 [hep-ph]

    Article  ADS  Google Scholar 

  8. J.L. Feng, Z.e. Surujon, H.-B. Yu, Phys. Rev. D 86, 035003 (2012). arXiv:1205.6480 [hep-ph]

    Article  ADS  Google Scholar 

  9. K.J. Bae, K. Choi, E.J. Chun, S.H. Im, C.B. Park, C.S. Shin. arXiv:1208.2555 [hep-ph]

  10. S.P. Martin, Phys. Rev. D 81, 035004 (2010). arXiv:0910.2732 [hep-ph]

    Article  ADS  Google Scholar 

  11. S.P. Martin, J.D. Wells, Phys. Rev. D 86, 035017 (2012). arXiv:1206.2956 [hep-ph]

    Article  ADS  Google Scholar 

  12. K.J. Bae, T.H. Jung, H.D. Kim. arXiv:1208.3748 [hep-ph]

  13. Z. Kang, T. Li, T. Liu, C. Tong, J.M. Yang. arXiv:1203.2336 [hep-ph]

  14. N. Craig, S. Knapen, D. Shih, Y. Zhao. arXiv:1206.4086 [hep-ph]

  15. Y. Shadmi, P.Z. Szabo, J. High Energy Phys. 1206, 124 (2012). arXiv:1103.0292 [hep-ph]

    Article  ADS  Google Scholar 

  16. A. Albaid, K.S. Babu, K.S. Babu. arXiv:1207.1014 [hep-ph]

  17. M. Abdullah, I. Galon, Y. Shadmi, Y. Shirman. arXiv:1209.4904 [hep-ph]

  18. J.L. Evans, M. Ibe, S. Shirai, T.T. Yanagida, Phys. Rev. D 85, 095004 (2012). arXiv:1201.2611 [hep-ph]

    Article  ADS  Google Scholar 

  19. J.L. Evans, M. Ibe, T.T. Yanagida, Phys. Lett. B 705, 342 (2011). arXiv:1107.3006 [hep-ph]

    Article  ADS  Google Scholar 

  20. M. Buican, P. Meade, N. Seiberg, D. Shih, J. High Energy Phys. 0903, 016 (2009). arXiv:0812.3668 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  21. R. Dermisek, H.D. Kim, Phys. Rev. Lett. 96, 211803 (2006). hep-ph/0601036

    Article  ADS  Google Scholar 

  22. R. Dermisek, H.D. Kim, I.-W. Kim, J. High Energy Phys. 0610, 001 (2006). hep-ph/0607169

    Article  ADS  Google Scholar 

  23. K. Choi, E.J. Chun, H.D. Kim, W.I. Park, C.S. Shin, Phys. Rev. D 83, 123503 (2011). arXiv:1102.2900 [hep-ph]

    Article  ADS  Google Scholar 

  24. G.R. Dvali, G.F. Giudice, A. Pomarol, Nucl. Phys. B 478, 31 (1996). hep-ph/9603238

    Article  ADS  Google Scholar 

  25. G.F. Giudice, H.D. Kim, R. Rattazzi, Phys. Lett. B 660, 545 (2008). arXiv:0711.4448 [hep-ph]

    Article  ADS  Google Scholar 

  26. F.R. Joaquim, A. Rossi, Phys. Rev. Lett. 97, 181801 (2006). hep-ph/0604083

    Article  ADS  Google Scholar 

  27. R.N. Mohapatra, N. Okada, H.-B. Yu, Phys. Rev. D 78, 075011 (2008). arXiv:0807.4524 [hep-ph]

    Article  ADS  Google Scholar 

  28. P. Fileviez Perez, H. Iminniyaz, G. Rodrigo, S. Spinner, Phys. Rev. D 81, 095013 (2010). arXiv:0911.1360 [hep-ph]

    Article  ADS  Google Scholar 

  29. F. Borzumati, A. Masiero, Phys. Rev. Lett. 57, 961 (1986)

    Article  ADS  Google Scholar 

  30. M. Ciuchini, A. Masiero, P. Paradisi, L. Silvestrini, S.K. Vempati, O. Vives, Nucl. Phys. B 783, 112 (2007). hep-ph/0702144 [HEP-PH]

    Article  ADS  Google Scholar 

  31. P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 530, 167 (2002). hep-ph/0202074

    Article  ADS  Google Scholar 

  32. Y. Lin, Nucl. Phys. B 824, 95 (2010). arXiv:0905.3534 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  33. H. Ishimori, E. Ma, Phys. Rev. D 86, 045030 (2012). arXiv:1205.0075 [hep-ph]

    Article  ADS  Google Scholar 

  34. G. Altarelli, F. Feruglio, L. Merlo, E. Stamou, J. High Energy Phys. 1208, 021 (2012). arXiv:1205.4670 [hep-ph]

    Article  ADS  Google Scholar 

  35. S.F. King, Phys. Lett. B 718, 136 (2012). arXiv:1205.0506 [hep-ph]

    Article  ADS  Google Scholar 

  36. P. Minkowski, Phys. Lett. B 67, 421 (1977)

    Article  ADS  Google Scholar 

  37. T. Yanagida, Conf. Proc. C 7902131, 95 (1979)

    Google Scholar 

  38. T. Yanagida, Prog. Theor. Phys. 64, 1103 (1980)

    Article  ADS  Google Scholar 

  39. M. Gell-Mann, P. Ramond, R. Slansky, Conf. Proc. C 790927, 315 (1979)

    Google Scholar 

  40. R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  41. G.F. Giudice, P. Paradisi, A. Strumia, Phys. Lett. B 694, 26 (2010). arXiv:1003.2388 [hep-ph]

    Article  ADS  Google Scholar 

  42. G.F. Giudice, R. Rattazzi, Nucl. Phys. B 511, 25 (1998). hep-ph/9706540

    Article  ADS  Google Scholar 

  43. N. Arkani-Hamed, G.F. Giudice, M.A. Luty, R. Rattazzi, Phys. Rev. D 58, 115005 (1998). hep-ph/9803290

    Article  ADS  Google Scholar 

  44. Z. Chacko, E. Ponton, Phys. Rev. D 66, 095004 (2002). hep-ph/0112190

    Article  ADS  Google Scholar 

  45. D. Grossman, Y. Nir, Phys. Rev. D 85, 055004 (2012). arXiv:1111.5751 [hep-ph]

    Article  ADS  Google Scholar 

  46. G.F. Giudice, R. Rattazzi, Nucl. Phys. B 757, 19 (2006). hep-ph/0606105

    Article  ADS  MATH  Google Scholar 

  47. Y. Abe et al. (DOUBLE-CHOOZ Collaboration), Phys. Rev. Lett. 108, 131801 (2012). arXiv:1112.6353 [hep-ex]

    Article  ADS  Google Scholar 

  48. M. Hartz (T2K Collaboration), arXiv:1201.1846 [hep-ex]

  49. P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 108, 191801 (2012). arXiv:1202.2772 [hep-ex]

    Article  ADS  Google Scholar 

  50. F.P. An et al. (DAYA-BAY Collaboration), Phys. Rev. Lett. 108, 171803 (2012). arXiv:1203.1669 [hep-ex]

    Article  ADS  Google Scholar 

  51. J.K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012). arXiv:1204.0626 [hep-ex]

    Article  ADS  Google Scholar 

  52. X.-G. He, Y.-Y. Keum, R.R. Volkas, J. High Energy Phys. 0604, 039 (2006). hep-ph/0601001

    Article  ADS  Google Scholar 

  53. X.-G. He, A. Zee, Phys. Lett. B 645, 427 (2007). hep-ph/0607163

    Article  ADS  Google Scholar 

  54. X.-G. He, A. Zee, Phys. Rev. D 84, 053004 (2011). arXiv:1106.4359 [hep-ph]

    Article  ADS  Google Scholar 

  55. Y. BenTov, X.-G. He, A. Zee. arXiv:1208.1062 [hep-ph]

  56. F. Bazzocchi, L. Merlo. arXiv:1205.5135 [hep-ph]

  57. J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  58. G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A.M. Rotunno, Phys. Rev. D 86, 013012 (2012). arXiv:1205.5254 [hep-ph]

    Article  ADS  Google Scholar 

  59. M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado, T. Schwetz. arXiv:1209.3023 [hep-ph]

  60. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, Phys. Rev. D 53, 2442 (1996). hep-ph/9510309

    Article  ADS  Google Scholar 

  61. E. Arganda, M.J. Herrero, Phys. Rev. D 73, 055003 (2006). hep-ph/0510405

    Article  ADS  Google Scholar 

  62. J.L. Hewett, H. Weerts, R. Brock, J.N. Butler, B.C.K. Casey, J. Collar, A. de Govea, R. Essig et al. arXiv:1205.2671 [hep-ex]

  63. J. Adam et al. (MEG Collaboration), Phys. Rev. Lett. 107, 171801 (2011). arXiv:1107.5547 [hep-ex]

    Article  ADS  Google Scholar 

  64. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 104, 021802 (2010). arXiv:0908.2381 [hep-ex]

    Article  ADS  Google Scholar 

  65. U. Bellgardt et al. (SINDRUM Collaboration), Nucl. Phys. B 299, 1 (1988)

    Article  ADS  Google Scholar 

  66. K. Hayasaka, K. Inami, Y. Miyazaki, K. Arinstein, V. Aulchenko, T. Aushev, A.M. Bakich, A. Bay et al., Phys. Lett. B 687, 139 (2010). arXiv:1001.3221 [hep-ex]

    Article  ADS  Google Scholar 

  67. C. Dohmen et al. (SINDRUM II Collaboration), Phys. Lett. B 317, 631 (1993)

    Article  ADS  Google Scholar 

  68. W.H. Bertl et al. (SINDRUM II Collaboration), Eur. Phys. J. C 47, 337 (2006)

    Article  ADS  Google Scholar 

  69. B. O’Leary et al. (SuperB Collaboration), arXiv:1008.1541 [hep-ex]

  70. A. Blondel et al. http://www.psi.ch/mu3e/DocumentsEN/LOI_Mu3e_PSI.pdf

  71. The PRIME working group, unpublished; LOI to J-PARC 50-GeV PS. LOI-25. http://www-ps.kek.jp/jhf-np/LOIlist/pdf/L25.pdf

  72. A. Abada, D. Das, A. Vicente, C. Weiland, J. High Energy Phys. 1209, 015 (2012). arXiv:1206.6497 [hep-ph]

    Article  ADS  Google Scholar 

  73. J.L. Lopez, D.V. Nanopoulos, X. Wang, Phys. Rev. D 49, 366 (1994). hep-ph/9308336

    Article  ADS  Google Scholar 

  74. U. Chattopadhyay, P. Nath, Phys. Rev. D 53, 1648 (1996). hep-ph/9507386

    Article  ADS  Google Scholar 

  75. M. Hirsch, F. Staub, A. Vicente, Phys. Rev. D 85, 113013 (2012). arXiv:1202.1825 [hep-ph]

    Article  ADS  Google Scholar 

  76. R. Fok, G.D. Kribs, Phys. Rev. D 82, 035010 (2010). arXiv:1004.0556 [hep-ph]

    Article  ADS  Google Scholar 

  77. R. Kitano, M. Koike, Y. Okada, Phys. Rev. D 66, 096002 (2002). (Erratum-ibid. D 76, 059902 (2007)). hep-ph/0203110

    Article  ADS  Google Scholar 

  78. G.W. Bennett et al. (Muon G-2 Collaboration), Phys. Rev. D 73, 072003 (2006). hep-ex/0602035

    Article  ADS  Google Scholar 

  79. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, J. Phys. G 38, 085003 (2011). arXiv:1105.3149 [hep-ph]

    Article  ADS  Google Scholar 

  80. T. Moroi, Phys. Rev. D 53, 6565 (1996). (Erratum-ibid. D 56, 4424 (1997)). hep-ph/9512396

    Article  ADS  Google Scholar 

  81. G.-C. Cho, K. Hagiwara, Y. Matsumoto, D. Nomura, J. High Energy Phys. 1111, 068 (2011). arXiv:1104.1769 [hep-ph]

    Article  ADS  Google Scholar 

  82. J. Hisano, K. Tobe, Phys. Lett. B 510, 197 (2001). hep-ph/0102315

    Article  ADS  Google Scholar 

  83. H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010). arXiv:1003.3552 [hep-th]

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the NRF of Korea No. 2011-0017051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Do Kim.

Appendices

Appendix A: Sparticle spectrum sample point

Table 3 Sparticle spectrum at the point giving 125 GeV Higgs mass with the lowest B N

Appendix B: Representations of S 4 symmetry and tensor products

Table 4 Sparticle spectrum at the point giving 123 GeV Higgs mass with the lowest B N

The S 4 is a non-abelian discrete symmetry and consists of all permutations among four quantities. For a review, see [83]. Irreducible representations of S 4 are two singlets 1,1′, one singlet 2, and two triplets 3,3′. Tensor products among them are given as follows:

$$\begin{aligned} &{\left ( \begin{array}{c} x_1 \\x_2 \\x_3 \end{array} \right )_\mathbf{3} \times \left ( \begin{array}{c} y_1 \\y_2 \\y_3 \end{array} \right )_\mathbf{3}} \\ &{\quad = (x_1y_1+x_2y_2+x_3y_3)_\mathbf{1}+ \left ( \begin{array}{c} x_1 y_1+\omega x_2y_2 +\omega^2 x_3y_3\\x_1 y_1+\omega^2 x_2y_2 +\omega x_3y_3 \end{array} \right )_{\mathbf{2}}} \\ &{\qquad {}+ \left ( \begin{array}{c} x_2y_3 + x_3y_2\\x_3 y_1+ x_1y_3 \\x_1y_2+x_2y_1 \end{array} \right )_\mathbf{3} + \left ( \begin{array}{c} x_2y_3 - x_3y_2\\x_3 y_1- x_1y_3 \\x_1y_2-x_2y_1 \end{array} \right )_{\mathbf{3}^\prime},} \end{aligned}$$
(B.1)
$$\begin{aligned} &{\left ( \begin{array}{c} x_1 \\x_2 \\x_3 \end{array} \right )_{\mathbf{3}^\prime} \times \left ( \begin{array}{c} y_1 \\y_2 \\y_3 \end{array} \right )_{\mathbf{3}^\prime}} \\ &{\quad = (x_1y_1+x_2y_2+x_3y_3)_\mathbf{1}+ \left ( \begin{array}{c} x_1 y_1+\omega x_2y_2 +\omega^2 x_3y_3\\x_1 y_1+\omega^2 x_2y_2 +\omega x_3y_3 \end{array} \right )_{\mathbf{2}}} \\ &{\qquad{}+ \left ( \begin{array}{c} x_2y_3 + x_3y_2\\x_3 y_1+ x_1y_3 \\x_1y_2+x_2y_1 \end{array} \right )_\mathbf{3} + \left ( \begin{array}{c} x_2y_3 - x_3y_2\\x_3 y_1- x_1y_3 \\x_1y_2-x_2y_1 \end{array} \right )_{\mathbf{3}^\prime},} \end{aligned}$$
(B.2)
$$\begin{aligned} &{\left ( \begin{array}{c} x_1 \\x_2 \\x_3 \end{array} \right )_\mathbf{3} \times \left ( \begin{array}{c} y_1 \\y_2 \\y_3 \end{array} \right )_{\mathbf{3}^\prime}} \\ &{\quad = (x_1y_1+x_2y_2+x_3y_3)_{\mathbf{1}^\prime}} \\ &{\qquad{}+ \left ( \begin{array}{c} x_1 y_1+\omega x_2y_2 +\omega^2 x_3y_3\\-(x_1 y_1+\omega^2 x_2y_2 +\omega x_3y_3) \end{array} \right )_{\mathbf{2}}} \\ &{\qquad{} + \left ( \begin{array}{c} x_2y_3 + x_3y_2\\x_3 y_1+ x_1y_3 \\x_1y_2+x_2y_1 \end{array} \right )_{\mathbf{3}^\prime} + \left ( \begin{array}{c} x_2y_3 - x_3y_2\\x_3 y_1- x_1y_3 \\x_1y_2-x_2y_1 \end{array} \right )_\mathbf{3},} \end{aligned}$$
(B.3)
$$\begin{aligned} &{\left ( \begin{array}{c} x_1 \\x_2 \end{array} \right )_{\mathbf{2}} \times \left ( \begin{array}{c} y_1 \\y_2 \end{array} \right )_{\mathbf{2}}} \\&{\quad = (x_1y_2+x_2y_1)_\mathbf{1}+ (x_1y_2-x_2y_1)_{\mathbf{1}^\prime}+ \left ( \begin{array}{c} x_2y_2 \\x_1 y_1 \end{array} \right )_{\mathbf{2}},} \end{aligned}$$
(B.4)
$$\begin{aligned} &{\left ( \begin{array}{c} x_1 \\x_2 \end{array} \right )_{\mathbf{2}} \times \left ( \begin{array}{c} y_1 \\y_2 \\y_3 \end{array} \right )_\mathbf{3}} \\&{\quad = \left ( \begin{array}{c} (x_1+x_2)y_1\\(\omega^2 x_1+\omega x_2) y_2 \\(\omega x_1 + \omega^2 x_2)y_3 \end{array} \right )_\mathbf{3} + \left ( \begin{array}{c} (x_1-x_2)y_1\\(\omega^2 x_1-\omega x_2) y_2 \\(\omega x_1 - \omega^2 x_2)y_3 \end{array} \right )_{\mathbf{3}^\prime},} \end{aligned}$$
(B.5)
$$\begin{aligned} &{\left ( \begin{array}{c} x_1 \\x_2 \end{array} \right )_{\mathbf{2}} \times \left ( \begin{array}{c} y_1 \\y_2 \\y_3 \end{array} \right )_{\mathbf{3}^\prime}} \\&{\quad = \left ( \begin{array}{c} (x_1+x_2)y_1\\(\omega^2 x_1+\omega x_2) y_2 \\(\omega x_1 + \omega^2 x_2)y_3 \end{array} \right )_{\mathbf{3}^\prime} + \left ( \begin{array}{c} (x_1-x_2)y_1\\(\omega^2 x_1-\omega x_2) y_2 \\(\omega x_1 - \omega^2 x_2)y_3 \end{array} \right )_\mathbf{3}} \end{aligned}$$
(B.6)

and, trivially, we have 3×1′=3′, 3′×1′=3′, and 2×1′=2.

Appendix C: Remarks on the flavon vacuum stability

In [55], it was shown that the A 4 triplet flavon vacuum in the direction of (1,1,1) and (1,0,0) ((0,1,0), (0,0,1) are the same) is favored compared to other directions, such as (1,1,0). Since A 4 symmetry is the subgroup of the S 4 composed of even permutations, similar arguments hold. In this appendix, we argue that triplet flavon directions favored in the A 4 model are also favored in the S 4 model and that the S 4 doublet vacuum favors the (1,1) direction.

Rigid SUSY makes the discussion more simple, because the potential V is minimized at 〈V〉=0. On the other hand, extra symmetries like Z 4 and U(1) L more restrict possible terms in the superpotential. Suppose that U(1) L symmetry is discretized to, for example, Z 8 symmetry. In this case, only quartic terms Φ 4 and χ 4 are allowed. Let us assume that breaking of extra symmetries introduces quadratic term, like m 1 Φ 2 or m 2 χ 2. To achieve this, let us consider ‘Z 4 breaking singlets’ ψ 1, \(\bar{\psi}_{1}\) and ‘lepton number breaking singlets’ ψ 2, \(\bar{\psi}_{2}\) with S 4×Z 4×U(1) L quantum numbers

(C.1)

They do not combine with \(\bar{E}LH_{d}\), NLH u and NN to make singlets under all symmetries imposed. Then, they can couple to Φ 2 or χ 2 such that a superpotential is given by

$$\begin{aligned} &{W(\psi_1, \bar{\psi}_1, \psi_2, \bar{\psi}_2)} \\&{\quad =\frac {1}{\varLambda}\bigl[ \varPhi^2\bar{\psi}_1\psi_1 + \chi^2\bar{\psi}_2\psi _2\bigr]} \\&{\qquad{}-M_1 \bar{\psi}_1\psi_1 + \frac{1}{\varLambda}\bigl[\kappa_1(\bar {\psi}_1 \psi_1)^2+\kappa_2 (\psi_1)^4 + \kappa_3 (\bar{\psi }_1)^4\bigr]} \\&{\qquad{} -M_2 \bar{\psi}_2\psi_2 +\frac{1}{\varLambda} \bigl[\kappa _1^\prime(\bar{\psi}_2 \psi_2)^2+\kappa_2^\prime( \psi_2)^4 + \kappa_3^\prime(\bar{ \psi}_2)^4\bigr] . } \\ \end{aligned}$$
(C.2)

In this superpotential, \(\bar{\psi_{1}}{\psi}_{1}\) and \(\bar{\psi _{2}}{\psi}_{2}\) pairs have VEVs and they provide m 1 Φ 2+m 2 χ 2 terms. With this setup, the triplet superpotential has the form of

$$\begin{aligned} W =&mS^2+\frac{\lambda_1}{\varLambda} \bigl(x^2+y^2+z^2\bigr)^2 \\&{}+ \frac {\lambda_2}{\varLambda}\bigl(x^2+\omega y^2+ \omega^2 z^2\bigr) \bigl(x^2+ \omega^2 y^2+\omega z^2\bigr) \\&{}+\frac{\lambda_3}{\varLambda}(xy+yz+zx)^2, \end{aligned}$$
(C.3)

where S=(x,y,z) represents the generic S 4 triplet such as Φ or χ. Note also that the superpotential has an accidental Z 2 symmetry under which ψ 1,2 and \(\bar{\psi}_{1,2}\) are odd whereas other fields are even. If this Z 2 symmetry is imposed, \((\varPhi^{2}\psi_{1}/\varLambda^{3})\bar{E}LH_{d}\) and (Φ 2 ψ 2/Λ 2)NN terms, which change the flavor structure in the subleading orders are forbidden. In this case, charged lepton Yukawa coupling structure in dimension-4 operator is preserved up to dimension-6 operator whereas Majorana mass structure in dimension-3 operator is preserved up to dimension-5 operator so corrections to them are highly suppressed.

Each term of the F-term potential V=|∂W/∂x|2+|∂W/∂y|2+|∂W/∂z|2 is given by

(C.4)

A stable vacuum requires that these three terms should be zero simultaneously. For vacuum 〈S〉=v(1,1,1), three terms give the same condition,

$$ 12(\lambda_1+\lambda_3) \biggl(\frac{v^3}{\varLambda} \biggr)+mv=0 $$
(C.5)

so the vacuum is stabilized at v 2=−/[12(λ 1+λ 3)]. For vacuum 〈S〉=v(1,0,0), the second and third terms vanish trivially and the first term gives

(C.6)

so the vacuum is stabilized at v 2=−/[4(λ 1+λ 3)]. The vacuum in the direction (0,1,0) and (0,0,1) gives the same result by permutational property of S 4. On the other hand, vacuum 〈S〉=v(1,1,0) gives two conditions,

(C.7)

If λ 3 is not forbidden by another symmetry, v=0 is the only solution and nontrivial vacuum cannot be developed.

The S 4 doublet stabilization can be discussed in the same way. The renormalizable superpotential for doublet (x,y) is written as

(C.8)

and the stabilization condition

(C.9)

requires that x=y. So the vacuum choice for Eq. (33) is stable.

Appendix D: Comment on Kähler potential corrections

In our setup, Yukawa couplings are constructed from non-renormalizable dimension-4 superpotential with several flavons. These flavons also appear in the non-renormalizable Kähler potential and kinetic terms are written in the form of

(D.1)

where ϕ and ψ represent bosonic and fermionic fields, respectively. The Kähler potential of charged lepton supermultiplet L is given by

(D.2)

and similar terms can be written for other fields, \(\bar{E}^{\dagger}\bar{E}\), N N, \(H_{u,d}^{\dagger}H_{u,d}\), etc. Then we have quite complicate terms. For example, from \((\varPhi_{\mathbf{3}}^{\dagger}\varPhi _{\mathbf{3}}/\varLambda^{2}) L^{\dagger}L\) where Φ 3 vacuum is given by v 2(1,1,1), we have

$$\begin{aligned} &{a_1\frac{\varPhi_\mathbf{3}^\dagger\varPhi_\mathbf{3}}{\varLambda^2} L^\dagger L \bigg|_{S_4~{\mathrm{singlets}}}} \\&{\quad = a_{1,1}\frac{v_2^2}{\varLambda ^2} \bigl(L_1^\dagger L_1 + L_2^\dagger L_2 + L_3^\dagger L_3\bigr)} \\&{\qquad{}+a_{1,2}\frac{v_2^2}{\varLambda^2} \bigl[ L_2^\dagger L_3 + L_3^\dagger L_2 + L_3^\dagger L_1+ L_1^\dagger L_3 + L_1^\dagger L_2} \\&{\qquad{} + L_2^\dagger L_1 \bigr].} \end{aligned}$$
(D.3)

Since 〈Φ〉/Λ=v 2/Λ is responsible for charged lepton Yukawa couplings, we see \(4\pi v_{2}/\varLambda\gtrsim Y_{\tau}= m_{\tau}/ [(v/\sqrt{2})\cos\beta] \sim0.1\) for tanβ=10. On the other hand, χ 3 has another vacuum direction, w 2(0,1,0). Then

$$\begin{aligned} &{a_2\frac{\chi^\dagger\chi}{\varLambda^2}L^\dagger L \bigg|_{S_4~{\mathrm{singlets}}}} \\&{\quad =a_{2,1}\frac{w_2^2}{\varLambda^2}\bigl(L_1^\dagger L_1 + L_2^\dagger L_2 + L_3^\dagger L_3\bigr)} \\&{\qquad{}+a_{2,2}\frac {w_2^2}{\varLambda^2}\bigl(-L_1^\dagger L_1 + L_2^\dagger L_2 - L_3^\dagger L_3\bigr)} \end{aligned}$$
(D.4)

so it just rescales the fields. Moreover, since See-Saw scale is about 1014 GeV, we have suppressed effect, 4πχ/Λ∼0.01 with Λ is the GUT scale. In the same way, doublet and singlet flavons in the Kähler potential just contribute to the field rescalings.

Physical fields are defined with canonical kinetic terms, so we should make field redefinitions and they affect flavor structures in principle. In our work, however, such effects are not considered by assuming small coefficients a 1,2. For example, diagonalization of Y E demonstrated above is not affected if \(a_{1} ( v_{2}^{2}/\varLambda^{2}) \lesssim(m_{e}/m_{\tau}) \sim3 \times10^{-4}\), i.e. a 1≲3.

On the other hand, mixings in the Kähler potential between flavons can be dangerous. For example, kinetic mixing between flavons such as \(\bar{\psi}_{1}^{\dagger}\psi_{2}^{\dagger}\varPhi_{\mathbf{3}}^{\dagger}\chi _{\mathbf{3}}/\varLambda^{2}\) can introduce small correction to Y E or M N with unwanted S 4 triplet vacuum direction. Such an effect is suppressed by \(\bar{\psi}_{1}^{\dagger}\psi_{2}^{\dagger}/\varLambda^{2}\) and can be more suppressed with a tiny coefficient.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.D., Mo, D.Y. & Seo, MS. Neutrino assisted gauge mediation. Eur. Phys. J. C 73, 2449 (2013). https://doi.org/10.1140/epjc/s10052-013-2449-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2449-z

Keywords

Navigation