Skip to main content
Log in

Flavored gauge-mediation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The messengers of Gauge-Mediation Models can couple to standard-model matter fields through renormalizable superpotential couplings. These matter-messenger couplings generate generation-dependent sfermion masses and are therefore usually forbidden by discrete symmetries. However, the non-trivial structure of the standard-model Yukawa couplings hints at some underlying flavor theory, which would necessarily control the sizes of the matter-messenger couplings as well. Thus for example, if the doublet messenger and the Higgs have the same properties under the flavor theory, the resulting messenger-lepton couplings are parametrically of the same order as the lepton Yukawas, so that slepton mass-splittings are similar to those of minimally-flavor-violating models and therefore satisfy bounds on flavor-violation, with, however, slepton mixings that are potentially large. Assuming that fermion masses are explained by a flavor symmetry, we construct viable and natural models with messenger-lepton couplings controlled by the flavor symmetry. The resulting slepton spectra are unusual and interesting, with slepton mass-splittings and mixings that may be probed at the LHC. In particular, since the new contributions are typically negative, and since they are often larger for the first- and second-generation sleptons, some of these examples have the selectron or the smuon as the lightest slepton, with mass splittings of a few to tens of GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MEGA collaboration, M. Brooks et al., New limit for the family number nonconserving decay μ +e + γ, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [INSPIRE].

    Article  ADS  Google Scholar 

  2. BABAR collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ +−e +− γ and τ +−μ +− γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].

    Article  ADS  Google Scholar 

  3. J.L. Feng, C.G. Lester, Y. Nir and Y. Shadmi, The standard model and supersymmetric flavor puzzles at the large hadron collider, Phys. Rev. D 77 (2008) 076002 [arXiv:0712.0674] [INSPIRE].

    ADS  Google Scholar 

  4. G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].

    ADS  Google Scholar 

  5. Y. Nomura and D. Stolarski, Naturally flavorful supersymmetry at the LHC, Phys. Rev. D 78 (2008) 095011 [arXiv:0808.1380] [INSPIRE].

    ADS  Google Scholar 

  6. Y. Nomura, M. Papucci and D. Stolarski, Flavorful supersymmetry from higher dimensions, JHEP 07 (2008) 055 [arXiv:0802.2582] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. C. Gross and G. Hiller, Flavorful hybrid anomaly-gravity mediation, Phys. Rev. D 83 (2011) 095015 [arXiv:1101.5352] [INSPIRE].

    ADS  Google Scholar 

  8. M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [INSPIRE].

    ADS  Google Scholar 

  9. M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].

    ADS  Google Scholar 

  10. G. Dvali, G. Giudice and A. Pomarol, The μ problem in theories with gauge mediated supersymmetry breaking, Nucl. Phys. B 478 (1996) 31 [hep-ph/9603238] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Dine, Y. Nir and Y. Shirman, Variations on minimal gauge mediated supersymmetry breaking, Phys. Rev. D 55 (1997) 1501 [hep-ph/9607397] [INSPIRE].

    ADS  Google Scholar 

  12. G. Giudice and R. Rattazzi, Extracting supersymmetry breaking effects from wave function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [INSPIRE].

    Article  ADS  Google Scholar 

  13. Z. Chacko and E. Ponton, Yukawa deflected gauge mediation, Phys. Rev. D 66 (2002) 095004 [hep-ph/0112190] [INSPIRE].

    ADS  Google Scholar 

  14. F. Joaquim and A. Rossi, Gauge and Yukawa mediated supersymmetry breaking in the triplet seesaw scenario, Phys. Rev. Lett. 97 (2006) 181801 [hep-ph/0604083] [INSPIRE].

    Article  ADS  Google Scholar 

  15. F. Joaquim and A. Rossi, Phenomenology of the triplet seesaw mechanism with gauge and Yukawa mediation of SUSY breaking, Nucl. Phys. B 765 (2007) 71 [hep-ph/0607298] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Brignole, F.R. Joaquim and A. Rossi, Beyond the standard seesaw: neutrino masses from Kähler operators and broken supersymmetry, JHEP 08 (2010) 133 [arXiv:1007.1942] [INSPIRE].

    Article  ADS  Google Scholar 

  17. C. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  18. N. Arkani-Hamed, H.-C. Cheng, J.L. Feng and L.J. Hall, Probing lepton flavor violation at future colliders, Phys. Rev. Lett. 77 (1996) 1937 [hep-ph/9603431] [INSPIRE].

    Article  ADS  Google Scholar 

  19. N. Arkani-Hamed, J.L. Feng, L.J. Hall and H.-C. Cheng, CP violation from slepton oscillations at the LHC and NLC, Nucl. Phys. B 505 (1997) 3 [hep-ph/9704205] [INSPIRE].

    Article  ADS  Google Scholar 

  20. K. Agashe and M. Graesser, Signals of supersymmetric lepton flavor violation at the CERN LHC, Phys. Rev. D 61 (2000) 075008 [hep-ph/9904422] [INSPIRE].

    ADS  Google Scholar 

  21. J. Hisano, R. Kitano and M.M. Nojiri, Slepton oscillation at large hadron collider, Phys. Rev. D 65 (2002) 116002 [hep-ph/0202129] [INSPIRE].

    ADS  Google Scholar 

  22. J. Hisano, M.M. Nojiri and W. Sreethawong, Discriminating electroweak-ino parameter ordering at the LHC and its impact on LFV studies, JHEP 06 (2009) 044 [arXiv:0812.4496] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Kitano, A clean slepton mixing signal at the LHC, JHEP 03 (2008) 023 [arXiv:0801.3486] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J.L. Feng, S.T. French, C.G. Lester, Y. Nir and Y. Shadmi, The shifted peak: resolving nearly degenerate particles at the LHC, Phys. Rev. D 80 (2009) 114004 [arXiv:0906.4215] [INSPIRE].

    ADS  Google Scholar 

  25. J.L. Feng, S.T. French, I. Galon, C.G. Lester, Y. Nir, et al., Measuring slepton masses and mixings at the LHC, JHEP 01 (2010) 047 [arXiv:0910.1618] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J.L. Feng, I. Galon, D. Sanford, Y. Shadmi and F. Yu, Three-body decays of sleptons with general flavor violation and left-right mixing, Phys. Rev. D 79 (2009) 116009 [arXiv:0904.1416] [INSPIRE].

    ADS  Google Scholar 

  27. B. Allanach, J. Conlon and C. Lester, Measuring smuon-selectron mass splitting at the CERN LHC and patterns of supersymmetry breaking, Phys. Rev. D 77 (2008) 076006 [arXiv:0801.3666] [INSPIRE].

    ADS  Google Scholar 

  28. S. Kaneko, J. Sato, T. Shimomura, O. Vives and M. Yamanaka, Measuring lepton flavour violation at LHC with long-lived slepton in the coannihilation region, Phys. Rev. D 78 (2008) 116013 [arXiv:0811.0703] [INSPIRE].

    ADS  Google Scholar 

  29. A. De Simone, J. Fan, V. Sanz and W. Skiba, Leptogenic supersymmetry, Phys. Rev. D 80 (2009) 035010 [arXiv:0903.5305] [INSPIRE].

    ADS  Google Scholar 

  30. A.J. Buras, L. Calibbi and P. Paradisi, Slepton mass-splittings as a signal of LFV at the LHC, JHEP 06 (2010) 042 [arXiv:0912.1309] [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Ito, R. Kitano and T. Moroi, Measurement of the superparticle mass spectrum in the long-lived Stau scenario at the LHC, JHEP 04 (2010) 017 [arXiv:0910.5853] [INSPIRE].

    Article  ADS  Google Scholar 

  32. R. Fok and G.D. Kribs, μ to e in R-symmetric supersymmetry, Phys. Rev. D 82 (2010) 035010 [arXiv:1004.0556] [INSPIRE].

    ADS  Google Scholar 

  33. H. Dreiner, S. Grab and T. Stefaniak, Discovery potential of selectron or smuon as the lightest supersymmetric particle at the LHC, Phys. Rev. D 84 (2011) 035023 [arXiv:1102.3189] [INSPIRE].

    ADS  Google Scholar 

  34. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  35. Y. Nir and N. Seiberg, Should squarks be degenerate?, Phys. Lett. B 309 (1993) 337 [hep-ph/9304307] [INSPIRE].

    Article  ADS  Google Scholar 

  36. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].

    Article  ADS  Google Scholar 

  37. Y. Nir, Probing new physics with flavor physics (and probing flavor physics with new physics), arXiv:0708.1872 [INSPIRE].

  38. M. Ciuchini, A. Masiero, P. Paradisi, L. Silvestrini, S. Vempati, et al., Soft SUSY breaking grand unification: leptons versus quarks on the flavor playground, Nucl. Phys. B 783 (2007) 112 [hep-ph/0702144] [INSPIRE].

    Article  ADS  Google Scholar 

  39. G. Hiller, Y. Hochberg and Y. Nir, Flavor changing processes in supersymmetric models with hybrid gauge- and gravity-mediation, JHEP 03 (2009) 115 [arXiv:0812.0511] [INSPIRE].

    Article  ADS  Google Scholar 

  40. C. Csáki, A. Falkowski, Y. Nomura and T. Volansky, New approach to the μB μ problem of gauge-mediated supersymmetry breaking, Phys. Rev. Lett. 102 (2009) 111801 [arXiv:0809.4492] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael Shadmi.

Additional information

ArXiv ePrint: 1103.0292

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shadmi, Y., Szabo, P.Z. Flavored gauge-mediation. J. High Energ. Phys. 2012, 124 (2012). https://doi.org/10.1007/JHEP06(2012)124

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)124

Keywords

Navigation