Skip to main content
Log in

Charged black hole remnants at the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We investigate possible signatures of long-lived (or stable) charged black holes at the Large Hadron Collider. In particular, we find that black hole remnants are characterised by quite low speed. Due to this fact, the charged remnants could, in some cases, be very clearly distinguished from the background events, exploiting dE/dX measurements. We also compare the estimate energy released by such remnants with that of typical Standard Model particles, using the Bethe–Bloch formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. R. Penrose, in the 1970s in unpublished works. We thank Peter D’Eath for explaining to one of us the history of black hole formation in the high energy collision of two particles.

  2. The calorimetric \(E_{T}^{\rm miss}\) was evaluated considering ν’s, gravitons, muons and charged remnants as invisible particles.

References

  1. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429, 263 (1998)

    Article  ADS  Google Scholar 

  2. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Rev. D 59, 0806004 (1999)

    Article  Google Scholar 

  3. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 436, 257 (1998)

    Article  ADS  Google Scholar 

  4. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. X. Calmet, S.D.H. Hsu, D. Reeb, Phys. Rev. D 77, 125015 (2008)

    Article  ADS  Google Scholar 

  7. X. Calmet, Mod. Phys. Lett. A 25, 1553 (2010)

    Article  ADS  MATH  Google Scholar 

  8. M. Cavaglia, Int. J. Mod. Phys. A 18, 1843 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. P. Kanti, Int. J. Mod. Phys. A 19, 4899 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. V. Cardoso, L. Gualtieri, C. Herdeiro et al., Class. Quantum Gravity 29, 244001 (2012)

    Article  ADS  Google Scholar 

  11. S.C. Park, Prog. Part. Nucl. Phys. 67, 617 (2012)

    Article  ADS  Google Scholar 

  12. S.W. Hawking, Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  13. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Dimopoulos, G. Landsberg, Phys. Rev. Lett. 87, 161602 (2001)

    Article  ADS  Google Scholar 

  15. T. Banks, W. Fischler, A model for high energy scattering in quantum gravity. arXiv:hep-th/9906038

  16. S.B. Giddings, S.D. Thomas, Phys. Rev. D 65, 056010 (2002)

    Article  ADS  Google Scholar 

  17. P.D. D’Eath, P.N. Payne, Phys. Rev. D 46, 658 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  18. P.D. D’Eath, P.N. Payne, Phys. Rev. D 46, 675 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  19. P.D. D’Eath, P.N. Payne, Phys. Rev. D 46, 694 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  20. D.M. Eardley, S.B. Giddings, Phys. Rev. D 66, 044011 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  21. S.D.H. Hsu, Phys. Lett. B 555, 92 (2003)

    Article  ADS  MATH  Google Scholar 

  22. F.S. Coelho, C. Herdeiro, M.O.P. Sampaio, Phys. Rev. Lett. 108, 181102 (2012)

    Article  ADS  Google Scholar 

  23. C. Herdeiro, M.O.P. Sampaio, C. Rebelo, J. High Energy Phys. 1107, 121 (2011)

    Article  ADS  Google Scholar 

  24. K.S. Thorne, Nonspherical gravitational collapse: a short review, in Magic Without Magic, ed. by J.R. Klauder, San Francisco (1972), pp. 231–258

    Google Scholar 

  25. C.M. Harris, P. Richardson, B.R. Webber, J. High Energy Phys. 0308, 033 (2003)

    Article  ADS  Google Scholar 

  26. M. Cavaglia, R. Godang, L. Cremaldi, D. Summers, Comput. Phys. Commun. 177, 506 (2007)

    Article  ADS  MATH  Google Scholar 

  27. G.L. Alberghi, R. Casadio, A. Tronconi, J. Phys. G 34, 767 (2007)

    Article  ADS  Google Scholar 

  28. D.-C. Dai, G. Starkman, D. Stojkovic, C. Issever, E. Rizvi, J. Tseng, Phys. Rev. D 77, 076007 (2008)

    Article  ADS  Google Scholar 

  29. J.A. Frost, J.R. Gaunt, M.O.P. Sampaio, M. Casals, S.R. Dolan, M.A. Parker, B.R. Webber, J. High Energy Phys. 0910, 014 (2009)

    Article  ADS  Google Scholar 

  30. V. Khachatryan et al. (CMS Collaboration), Phys. Lett. B 697, 434 (2011)

    Article  ADS  Google Scholar 

  31. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 122 (2012)

    Article  ADS  Google Scholar 

  32. S.C. Park, Phys. Lett. B 701, 587 (2011)

    Article  ADS  Google Scholar 

  33. X. Calmet, W. Gong, S.D.H. Hsu, Phys. Lett. B 668, 20 (2008)

    Article  ADS  Google Scholar 

  34. X. Calmet, D. Fragkakis, N. Gausmann, Eur. Phys. J. C 71, 1781 (2011)

    Article  ADS  Google Scholar 

  35. X. Calmet, D. Fragkakis, N. Gausmann, Non thermal small black holes, in Black Holes: Evolution, Theory and Thermodynamics, ed. by A.J. Bauer, D.G. Eiffel (Nova Publishers, New York, 2012). arXiv:1201.4463

    Google Scholar 

  36. X. Calmet, L.I. Caramete, O. Micu, J. High Energy Phys. 1211, 104 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  37. P. Meade, L. Randall, J. High Energy Phys. 0805, 003 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  38. B. Koch, M. Bleicher, S. Hossenfelder, J. High Energy Phys. 0510, 053 (2005)

    Article  ADS  Google Scholar 

  39. S. Hossenfelder, Nucl. Phys. A 774, 865 (2006)

    Article  ADS  Google Scholar 

  40. L. Bellagamba, R. Casadio, R. Di Sipio, V. Viventi, Eur. Phys. J. C 72, 1957 (2012)

    Article  ADS  Google Scholar 

  41. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, J. High Energy Phys. 0704, 081 (2007)

    Article  ADS  Google Scholar 

  42. T. Sjostrand, S. Mrenna, P. Skands, J. High Energy Phys. 0605, 026 (2006)

    Article  ADS  Google Scholar 

  43. A.C. Kraan, J.B. Hansen, P. Nevski, Eur. Phys. J. C 49, 623 (2007)

    Article  ADS  Google Scholar 

  44. R. Hauser, Eur. Phys. J. C 34, S173 (2004)

    Article  ADS  Google Scholar 

  45. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 720, 277 (2013)

    Article  ADS  Google Scholar 

  46. J. Pinfold (MOEDAL Collaboration), CERN Cour. 50(4), 19 (2010)

    Google Scholar 

  47. R. Casadio, B. Harms, Int. J. Mod. Phys. A 17, 4635 (2002)

    Article  ADS  MATH  Google Scholar 

  48. R. Casadio, J. Ovalle, Phys. Lett. B 715, 251 (2012)

    Article  ADS  Google Scholar 

  49. R. Casadio, J. Ovalle, Brane-world stars from minimal geometric deformation, and black holes. arXiv:1212.0409

Download references

Acknowledgements

G.L.A. would like to thank L. Fabbri and R. Spighi for the very useful discussions. This work is supported in part by the European Cooperation in Science and Technology (COST) action MP0905 “Black Holes in a Violent Universe”. The work of X.C. is supported in part by the Science and Technology Facilities Council (grant number ST/J000477/1). O.M. is supported by UEFISCDI grant PN-II-RU-TE-2011-3-0184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Casadio.

Appendix: Charged remnant BHs in the brane-world

Appendix: Charged remnant BHs in the brane-world

A simple application of the four-dimensional Reissner–Nordström metric to BHs with mass \(M\sim M_{\rm G}\) and charge Qe would show that such objects must be naked singularities. However, in brane-world models, one can employ the tidal charge form of the metric and find that, provided the tidal charge q is strong enough, microscopic BH can carry a charge of the order of e [47]. In particular, the horizon radius is now given by

(A.1)

where \(M_{\rm P}\) and \(\ell_{\rm P}\) are the Planck mass and length, respectively, and \(\tilde{Q}\) is the electric charge in dimensionless units, that is,

(A.2)

Reality of Eq. (A.1) for a remnant of charge Qe and mass \(M\simeq M_{\rm G}\) then requires

(A.3)

Configurations satisfying the above bound were recently found in Refs. [48, 49].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberghi, G.L., Bellagamba, L., Calmet, X. et al. Charged black hole remnants at the LHC. Eur. Phys. J. C 73, 2448 (2013). https://doi.org/10.1140/epjc/s10052-013-2448-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2448-0

Keywords

Navigation