Skip to main content
Log in

Quantum black holes from cosmic rays

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the possibility for cosmic ray experiments to discover non-thermal small black holes with masses in the TeV range. Such black holes would result due to the impact between ultra high energy cosmic rays or neutrinos with nuclei from the upper atmosphere and decay instantaneously. They could be produced copiously if the Planck scale is in the few TeV region. As their masses are close to the Planck scale, these holes would typically decay into two particles emitted back-to-back. Depending on the angles between the emitted particles with respect to the center of mass direction of motion, it is possible for the simultaneous showers to be measured by the detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Google Scholar 

  2. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].

    ADS  Google Scholar 

  3. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].

    ADS  Google Scholar 

  4. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. X. Calmet, S.D. Hsu and D. Reeb, Quantum gravity at a TeV and the renormalization of Newtons constant, Phys. Rev. D 77 (2008) 125015 [arXiv:0803.1836] [INSPIRE].

    ADS  Google Scholar 

  6. P. D’Eath and P. Payne, Gravitational radiation in high speed black hole collisions. 1. Perturbation treatment of the axisymmetric speed of light collision, Phys. Rev. D 46 (1992) 658 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. P. D’Eath and P. Payne, Gravitational radiation in high speed black hole collisions. 2. Reduction to two independent variables and calculation of the second order news function, Phys. Rev. D 46 (1992) 675 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. P. D’Eath and P. Payne, Gravitational radiation in high speed black hole collisions. 3. Results and conclusions, Phys. Rev. D 46 (1992) 694 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. S.D. Hsu, Quantum production of black holes, Phys. Lett. B 555 (2003) 92 [hep-ph/0203154] [INSPIRE].

    ADS  Google Scholar 

  11. P. Meade and L. Randall, Black holes and quantum gravity at the LHC, JHEP 05 (2008) 003 [arXiv:0708.3017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett. 87 (2001) 161602 [hep-ph/0106295] [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Banks and W. Fischler, A model for high-energy scattering in quantum gravity, hep-th/9906038 [INSPIRE].

  14. S.B. Giddings and S.D. Thomas, High-energy colliders as black hole factories: the end of short distance physics, Phys. Rev. D 65 (2002) 056010 [hep-ph/0106219] [INSPIRE].

    ADS  Google Scholar 

  15. J.L. Feng and A.D. Shapere, Black hole production by cosmic rays, Phys. Rev. Lett. 88 (2002) 021303 [hep-ph/0109106] [INSPIRE].

    Article  ADS  Google Scholar 

  16. L.A. Anchordoqui, J.L. Feng, H. Goldberg and A.D. Shapere, Inelastic black hole production and large extra dimensions, Phys. Lett. B 594 (2004) 363 [hep-ph/0311365] [INSPIRE].

    ADS  Google Scholar 

  17. L.A. Anchordoqui, J.L. Feng, H. Goldberg and A.D. Shapere, Black holes from cosmic rays: probes of extra dimensions and new limits on TeV scale gravity, Phys. Rev. D 65 (2002) 124027 [hep-ph/0112247] [INSPIRE].

    ADS  Google Scholar 

  18. L.A. Anchordoqui, J.L. Feng, H. Goldberg and A.D. Shapere, Updated limits on TeV scale gravity from absence of neutrino cosmic ray showers mediated by black holes, Phys. Rev. D 68 (2003) 104025 [hep-ph/0307228] [INSPIRE].

    ADS  Google Scholar 

  19. X. Calmet, W. Gong and S.D. Hsu, Colorful quantum black holes at the LHC, Phys. Lett. B 668 (2008) 20 [arXiv:0806.4605] [INSPIRE].

    ADS  Google Scholar 

  20. X. Calmet, D. Fragkakis and N. Gausmann, The flavor of quantum gravity, Eur. Phys. J. C 71 (2011) 1781 [arXiv:1105.1779] [INSPIRE].

    Article  ADS  Google Scholar 

  21. X. Calmet, D. Fragkakis and N. Gausmann, Non thermal small black holes, to appear in Black Holes: Evolution, Theory and Thermodynamics, Nova Publishers, New York U.S.A. arXiv:1201.4463 [INSPIRE].

  22. M. Cavaglia, Black hole and brane production in TeV gravity: a review, Int. J. Mod. Phys. A 18 (2003) 1843 [hep-ph/0210296] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. P. Kanti, Black holes in theories with large extra dimensions: a review, Int. J. Mod. Phys. A 19 (2004) 4899 [hep-ph/0402168] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. R. Casadio, S. Fabi and B. Harms, On the possibility of catastrophic black hole growth in the warped brane-world scenario at the LHC, Phys. Rev. D 80 (2009) 084036 [arXiv:0901.2948] [INSPIRE].

    ADS  Google Scholar 

  25. R. Casadio, S. Fabi, B. Harms and O. Micu, Theoretical survey of tidal-charged black holes at the LHC, JHEP 02 (2010) 079 [arXiv:0911.1884] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Casadio and O. Micu, Exploring the bulk of tidal charged micro-black holes, Phys. Rev. D 81 (2010) 104024 [arXiv:1002.1219] [INSPIRE].

    ADS  Google Scholar 

  27. R. Casadio, B. Harms and O. Micu, Effect of brane thickness on microscopic tidal-charged black holes, Phys. Rev. D 82 (2010) 044026 [arXiv:1003.2572] [INSPIRE].

    ADS  Google Scholar 

  28. G.L. Alberghi, R. Casadio, O. Micu and A. Orlandi, Brane-world black holes and the scale of gravity, JHEP 09 (2011) 023 [arXiv:1104.3043] [INSPIRE].

    Article  ADS  Google Scholar 

  29. H. Yoshino and Y. Nambu, High-energy headon collisions of particles and hoop conjecture, Phys. Rev. D 66 (2002) 065004 [gr-qc/0204060] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. D. Stojkovic, G.D. Starkman and D.-C. Dai, Why black hole production in scattering of cosmic ray neutrinos is generically suppressed, Phys. Rev. Lett. 96 (2006) 041303 [hep-ph/0505112] [INSPIRE].

    Article  ADS  Google Scholar 

  31. L.I. Caramete, O. Tascau, P.L. Biermann and T. Stanev, Predicted power in ultra high energy cosmic rays from active galaxies, arXiv:1106.5109 [INSPIRE].

  32. A. Olinto, Ultrahigh-energy cosmic rays: the theoretical challenge, Phys. Rept. 333 (2000) 329 [astro-ph/0002006] [INSPIRE].

    Article  ADS  Google Scholar 

  33. D. Allard et al., Cosmogenic neutrinos from the propagation of ultrahigh energy nuclei, JCAP 09 (2006) 005 [astro-ph/0605327] [INSPIRE].

    Article  ADS  Google Scholar 

  34. D. Hooper, A. Taylor and S. Sarkar, The impact of heavy nuclei on the cosmogenic neutrino flux, Astropart. Phys. 23 (2005) 11 [astro-ph/0407618] [INSPIRE].

    Article  ADS  Google Scholar 

  35. D. Heck and J. Knapp, Upgrade of the Monte Carlo Code CORSIKA to Simulate Extensive Air Showers with Energies > 1020 eV, Forschungszentrum Karlsruhe Report FZKA 6097, Karlsruhe Germany (1998), available from http://www-ik.fzk.de/~heck/publications/.

  36. D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz and T. Thouw, CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers, Forschungszentrum Karlsruhe Report FZKA 6019, Karlsruhe Germany (1998), available from http://www-ik.fzk.de/corsika/physics description/corsika phys.html.

  37. JEM-EUSO collaboration, M. Casolino et al., Detecting ultra-high energy cosmic rays from space with unprecedented acceptance: Objectives and design of the JEM-EUSO mission, Astrophys. Space Sci. Trans. 7 (2011) 477.

    Article  ADS  Google Scholar 

  38. C. Harris, P. Richardson and B. Webber, CHARYBDIS: a black hole event generator, JHEP 08 (2003) 033 [hep-ph/0307305] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D.-C. Dai et al., BlackMax: a black-hole event generator with rotation, recoil, split branes and brane tension, Phys. Rev. D 77 (2008) 076007 [arXiv:0711.3012] [INSPIRE].

    ADS  Google Scholar 

  40. D.M. Gingrich, Quantum black holes with charge, colour and spin at the LHC, J. Phys. G 37 (2010) 105008 [arXiv:0912.0826] [INSPIRE].

    ADS  Google Scholar 

  41. Pierre Auger collaboration, P. Abreu et al., The Pierre Auger observatory I: the cosmic ray energy spectrum and related measurements, arXiv:1107.4809 [INSPIRE].

  42. Pierre Auger collaboration, J. Abraham et al., Observation of the suppression of the flux of cosmic rays above 4 × 1019 eV, Phys. Rev. Lett. 101 (2008) 061101 [arXiv:0806.4302] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavian Micu.

Additional information

ArXiv ePrint: 1204.2520

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calmet, X., Caramete, L.I. & Micu, O. Quantum black holes from cosmic rays. J. High Energ. Phys. 2012, 104 (2012). https://doi.org/10.1007/JHEP11(2012)104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)104

Keywords

Navigation