Skip to main content
Log in

A complete \(\mathcal{O}(\alpha_{\mathrm{S}}^{2})\) calculation of the signal–background interference for the Higgs diphoton decay channel

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present the full \(\mathcal{O}(\alpha_{\mathrm{S}}^{2})\) computation of the interference effects between the Higgs diphoton signal and the continuum background at the LHC. While the main contribution to the interference originates on the gg partonic subprocess, we find that the corrections from the qg and \(q\bar{q}\) channels amount up to 35 % of it. We discuss the effect of these new subprocesses in the shift of the diphoton invariant mass peak recently reported by S. Martin in (Phys. Rev. D 86:073016, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For a review see [24, 25].

  2. The details on the implementation of the lineshape [35] have a very small effect on the light Higgs discussed in this note. We rely here on a naive Breit–Wigner prescription.

  3. Apart from a small imaginary part originated on the heavy-quark loop in the Higgs production amplitude that is discarded in this note since we rely on the effective ggH vertex. There is also an imaginary contribution in the decay process Hγγ which was included since the full expression for the vertex was used, but was found to be negligible.

References

  1. S.P. Martin, Phys. Rev. D 86, 073016 (2012). arXiv:1208.1533 [hep-ph]

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  3. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  4. ATLAS: detector and physics performance technical design report, vol. 2, CERN-LHCC-99-15

  5. H.M. Georgi, S.L. Glashow, M.E. Machacek, D.V. Nanopoulos, Phys. Rev. Lett. 40, 692 (1978)

    Article  ADS  Google Scholar 

  6. S. Dawson, Nucl. Phys. B 359, 283 (1991)

    Article  ADS  Google Scholar 

  7. A. Djouadi, M. Spira, P.M. Zerwas, Phys. Lett. B 264, 440 (1991)

    Article  ADS  Google Scholar 

  8. M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Nucl. Phys. B 453, 17 (1995)

    Article  ADS  Google Scholar 

  9. R.V. Harlander, W.B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002)

    Article  ADS  Google Scholar 

  10. C. Anastasiou, K. Melnikov, Nucl. Phys. B 646, 220 (2002)

    Article  ADS  Google Scholar 

  11. V. Ravindran, J. Smith, W.L. van Neerven, Nucl. Phys. B 665, 325 (2003)

    Article  ADS  Google Scholar 

  12. C. Anastasiou, K. Melnikov, F. Petriello, Phys. Rev. Lett. 93, 262002 (2004)

    Article  ADS  Google Scholar 

  13. C. Anastasiou, K. Melnikov, F. Petriello, Nucl. Phys. B 724, 197 (2005)

    Article  ADS  Google Scholar 

  14. C. Anastasiou, G. Dissertori, F. Stockli, J. High Energy Phys. 0709, 018 (2007)

    Article  ADS  Google Scholar 

  15. S. Catani, M. Grazzini, Phys. Rev. Lett. 98, 222002 (2007)

    Article  ADS  Google Scholar 

  16. M. Grazzini, J. High Energy Phys. 0802, 043 (2008)

    Article  ADS  Google Scholar 

  17. D. de Florian, M. Grazzini, Phys. Lett. B 718, 117 (2012). arXiv:1206.4133 [hep-ph]

    Article  ADS  Google Scholar 

  18. U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, Phys. Lett. B 595, 432 (2004)

    Article  ADS  Google Scholar 

  19. G. Degrassi, F. Maltoni, Phys. Lett. B 600, 255 (2004)

    Article  ADS  Google Scholar 

  20. U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, arXiv:hep-ph/0610033

  21. S. Actis, G. Passarino, C. Sturm, S. Uccirati, Phys. Lett. B 670, 12 (2008)

    Article  ADS  Google Scholar 

  22. S. Actis, G. Passarino, C. Sturm, S. Uccirati, Nucl. Phys. B 811, 182 (2009)

    Article  ADS  MATH  Google Scholar 

  23. S. Catani, D. de Florian, M. Grazzini, P. Nason, J. High Energy Phys. 0307, 028 (2003)

    Article  ADS  Google Scholar 

  24. S. Dittmaier et al. (LHC Higgs Cross Section Working Group Collaboration), arXiv:1101.0593 [hep-ph]

  25. S. Dittmaier et al. (LHC Higgs Cross Section Working Group Collaboration), arXiv:1201.3084 [hep-ph]

  26. J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos, Nucl. Phys. B 106, 292 (1976)

    ADS  Google Scholar 

  27. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Sov. J. Nucl. Phys. 30, 711 (1979) [Yad. Fiz. 30, 1368 (1979)]

    Google Scholar 

  28. H.-Q. Zheng, D.-D. Wu, Phys. Rev. D 42, 3760–3763 (1990)

    Article  ADS  Google Scholar 

  29. A. Djouadi, M. Spira, J. van der Bij, P. Zerwas, Phys. Lett. B 257, 187–190 (1991)

    Article  ADS  Google Scholar 

  30. S. Dawson, R. Kauffman, Phys. Rev. D 47, 1264–1267 (1993)

    Article  ADS  Google Scholar 

  31. A. Djouadi, M. Spira, P. Zerwas, Phys. Lett. B 311, 255–260 (1993). arXiv:hep-ph/9305335 [hep-ph]

    Article  ADS  Google Scholar 

  32. K. Melnikov, O.I. Yakovlev, Phys. Lett. B 312, 179–183 (1993). arXiv:hep-ph/9302281 [hep-ph]

    Article  ADS  Google Scholar 

  33. M. Inoue, R. Najima, T. Oka, J. Saito, Mod. Phys. Lett. A 9, 1189–1194 (1994)

    Article  ADS  Google Scholar 

  34. S. Catani, L. Cieri, D. de Florian, G. Ferrera, M. Grazzini, Phys. Rev. Lett. 108, 072001 (2012). arXiv:1110.2375 [hep-ph]

    Article  ADS  Google Scholar 

  35. S. Goria, G. Passarino, D. Rosco, Nucl. Phys. B 864, 530 (2012). arXiv:1112.5517 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  36. L.J. Dixon, M.S. Siu, Phys. Rev. Lett. 90, 252001 (2003). arXiv:hep-ph/0302233

    Article  ADS  Google Scholar 

  37. D.A. Dicus, S.S.D. Willenbrock, Phys. Rev. D 37, 1801 (1988)

    Article  ADS  Google Scholar 

  38. T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260

    Article  ADS  Google Scholar 

  39. R. Mertig, M. Bohm, A. Denner, Comput. Phys. Commun. 64, 345 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  40. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

  41. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  42. S. Frixione, Phys. Lett. B 429, 369 (1998). arXiv:hep-ph/9801442

    Article  ADS  Google Scholar 

  43. D. de Florian, Z. Kunszt, Phys. Lett. B 460, 184 (1999). arXiv:hep-ph/9905283

    Article  ADS  Google Scholar 

  44. G. Passarino, J. High Energy Phys. 1208, 146 (2012). arXiv:1206.3824 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L. Cieri and the participants of the Second Phenomenology Workshop (Tandil 2012) for discussions and contributions at the various stages of this work, and L. Dixon and S. Martin for helpful comments and comparisons. This work was supported in part by UBACYT, CONICET, ANPCyT and the Research Executive Agency (REA) of the European Union under the Grant Agreement number PITN-GA-2010-264564 (LHCPhenoNet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Sborlini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Florian, D., Fidanza, N., Hernández-Pinto, R. et al. A complete \(\mathcal{O}(\alpha_{\mathrm{S}}^{2})\) calculation of the signal–background interference for the Higgs diphoton decay channel. Eur. Phys. J. C 73, 2387 (2013). https://doi.org/10.1140/epjc/s10052-013-2387-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2387-9

Keywords

Navigation