Skip to main content
Log in

Higgs interference effects in gg → ZZ and their uncertainty

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Interference between the Standard Model Higgs boson and continuum contributions in gg → ZZ is considered in the heavy-mass scenario. Results are available at leading order for the background (the gg → ZZ box diagrams). It is discussed how to combine the result with the next-to-next-to-leading order Higgs production cross-section and a proposal for estimating the associated theoretical uncertainty is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  2. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].

  3. C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous standard model interactions, JHEP 12 (2011) 058 [arXiv:1107.0683] [INSPIRE].

    Article  ADS  Google Scholar 

  4. C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Inclusive Higgs boson cross-section for the LHC at 8 TeV, JHEP 04 (2012) 004 [arXiv:1202.3638] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Goria, G. Passarino and D. Rosco, The Higgs boson lineshape, Nucl. Phys. B 864 (2012) 530 [arXiv:1112.5517] [INSPIRE].

    Article  ADS  Google Scholar 

  6. N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, arXiv:1206.4803 [INSPIRE].

  7. G. Passarino, C. Sturm and S. Uccirati, Higgs pseudo-observables, second Riemann sheet and all that, Nucl. Phys. B 834 (2010) 77 [arXiv:1001.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Actis and G. Passarino, Two-loop renormalization in the standard model part III: renormalization equations and their solutions, Nucl. Phys. B 777 (2007) 100 [hep-ph/0612124] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the decay channel H → ZZ (*) → 4l with 4.8 fb −1 of pp collision data at \( \sqrt {s} = {7}\;TeV \) with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].

    Article  ADS  Google Scholar 

  10. ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the H → WW (*) → lνlν decay mode with 4.7 fb −1 of ATLAS data at \( \sqrt {s} = {7}\;TeV \), arXiv:1206.0756 [INSPIRE].

  11. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt {s} = {7}\;TeV \), Phys. Lett. B 710 (2012) 91 [arXiv:1202.1489] [INSPIRE].

    Article  ADS  Google Scholar 

  12. ATLAS collaboration, G. Aad et al., Search for a standard model Higgs boson in the \( H \to ZZ \to {l^{ + }}{l^{ - }}\nu \overline \nu \) decay channel using 4.7fb −1 of \( \sqrt {s} = {7}\;TeV \) data with the ATLAS detector, arXiv:1205.6744 [INSPIRE].

  13. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the H → ZZ → 2l2ν channel in pp collisions at \( \sqrt {s} = {7}\;TeV \), JHEP 03 (2012) 040 [arXiv:1202.3478] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J.M. Campbell, R.K. Ellis and C. Williams, Gluon-gluon contributions to W + W production and Higgs interference effects, JHEP 10 (2011) 005 [arXiv:1107.5569] [INSPIRE].

    Article  ADS  Google Scholar 

  15. N. Kauer, Signal-background interference in gg → H → VV, arXiv:1201.1667 [INSPIRE].

  16. T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].

    Article  ADS  Google Scholar 

  17. E. Accomando, The process gg → WW as a probe into the EWSB mechanism, Phys. Lett. B 661 (2008) 129 [arXiv:0709.1364] [INSPIRE].

    Article  ADS  Google Scholar 

  18. U. Baur and E.N. Glover, Observability of a heavy Higgs boson at hadron supercolliders, Phys. Rev. D 44 (1991) 99 [INSPIRE].

    ADS  Google Scholar 

  19. U. Baur and E.N. Glover, Z boson pair production via vector boson scattering and the search for the Higgs boson at hadron supercolliders, Nucl. Phys. B 347 (1990) 12 [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The probable fate of the standard model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S. Kanemura, Y. Okada, H. Taniguchi and K. Tsumura, Indirect bounds on heavy scalar masses of the two-Higgs-doublet model in light of recent Higgs boson searches, Phys. Lett. B 704 (2011) 303 [arXiv:1108.3297] [INSPIRE].

    Article  ADS  Google Scholar 

  22. L.J. Dixon and M.S. Siu, Resonance continuum interference in the diphoton Higgs signal at the LHC, Phys. Rev. Lett. 90 (2003) 252001 [hep-ph/0302233] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Bredenstein, A. Denner, S. Dittmaier and M. Weber, Precision calculations for H → WW/ZZ → 4 fermions with PROPHECY4f, arXiv:0708.4123 [INSPIRE].

  25. A. Bredenstein et al., Prophecy4f: a Monte Carlo generator for a proper description of the Higgs decay into 4 fermions, http://omnibus.uni-freiburg.de/~sd565/programs/prophecy4f/prophecy4f.html (2010).

  26. E.N. Glover and J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

    Article  ADS  Google Scholar 

  31. R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to proton proton → H + x at NNLO, Phys. Rev. D 64 (2001) 013015 [hep-ph/0102241] [INSPIRE].

    ADS  Google Scholar 

  32. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

    Article  ADS  Google Scholar 

  33. V. Ravindran, J. Smith and W. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].

    Article  ADS  Google Scholar 

  34. D. de Florian and M. Grazzini, Higgs production at the LHC: updated cross sections at \( \sqrt {s} = {8}\;TeV \), arXiv:1206.4133 [INSPIRE].

  35. C. Williams, Interference effects in Higgs to W pairs (in MCFM), talk given at The case of a large-mass Higgs, May 14-15, CERN, Switzerland (2012).

    Google Scholar 

  36. S. Frixione, Strategy for heavy-Higgs production and interference effects, talk given at The case of a large-mass Higgs, May 14-15, CERN, Switzerland (2012).

    Google Scholar 

  37. S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M.H. Seymour, The Higgs boson line shape and perturbative unitarity, Phys. Lett. B 354 (1995) 409 [hep-ph/9505211] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D. de Florian and M. Grazzini, Higgs production through gluon fusion: Updated cross sections at the Tevatron and the LHC, Phys. Lett. B 674 (2009) 291 [arXiv:0901.2427] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Grazzini, NNLO predictions for the Higgs boson signal in the H → WW → lνlν and H → ZZ → 4 l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Catani, D. de Florian and M. Grazzini, Higgs production in hadron collisions: soft and virtual QCD corrections at NNLO, JHEP 05 (2001) 025 [hep-ph/0102227] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J. Conway, Incorporating nuisance parameters in likelihoods for multisource spectra, arXiv:1103.0354 [INSPIRE].

  44. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  Google Scholar 

  45. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  46. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  47. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].

    Article  ADS  Google Scholar 

  48. D.A. Dicus and S.S. Willenbrock, Photon pair production and the intermediate mass Higgs boson, Phys. Rev. D 37 (1988) 1801 [INSPIRE].

    ADS  Google Scholar 

  49. Z. Bern, L.J. Dixon and C. Schmidt, Isolating a light Higgs boson from the diphoton background at the CERN LHC, Phys. Rev. D 66 (2002) 074018 [hep-ph/0206194] [INSPIRE].

    ADS  Google Scholar 

  50. B. Mistlberger and F. Dulat, Limit setting procedures and theoretical uncertainties in Higgs boson searches, arXiv:1204.3851 [INSPIRE].

  51. C. Anastasiou, Total Higgs boson production cross-section, talk given at The case of a large-mass Higgs, May 14-15, CERN, Switzerland (2012).

    Google Scholar 

  52. W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  53. D0 collaboration, B. Abbott et al., Search for new physics in eμX data at DO using Sherlock: a quasi model independent search strategy for new physics, Phys. Rev. D 62 (2000) 092004 [hep-ex/0006011] [INSPIRE].

    ADS  Google Scholar 

  54. H1 collaboration, A. Aktas et al., A general search for new phenomena in ep scattering at HERA, Phys. Lett. B 602 (2004) 14 [hep-ex/0408044] [INSPIRE].

    ADS  Google Scholar 

  55. S. Kraml et al., Searches for new physics: les houches recommendations for the presentation of LHC results, Eur. Phys. J. C 72 (2012) 1976 [arXiv:1203.2489] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Passarino.

Additional information

Work supported by MIUR under contract 2001023713_006 and by Compagnia di San Paolo under contract ORTO11TPXK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passarino, G. Higgs interference effects in gg → ZZ and their uncertainty. J. High Energ. Phys. 2012, 146 (2012). https://doi.org/10.1007/JHEP08(2012)146

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)146

Keywords

Navigation