Skip to main content
Log in

Decays of H 0/A 0 in supersymmetric scenarios with heavy sfermions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The recent discovery of a new boson at the LHC, which resembles a SM-like Higgs boson with m h =125 GeV, is starting to provide strong guidelines into SUSY model building. For instance, the identification of such a state with the lightest CP-even Higgs boson of the MSSM (h 0), requires large values of tanβ and/or heavy sfermions. One outcome of this result is the possibility to solve the SUSY flavor and CP problems by decoupling, which points towards some realization of Split-inspired SUSY scenarios, in which scalars are much heavier than gauginos and higgsinos. However, we argue here that the remaining Higgs bosons of the MSSM (H 0, A 0, H ±) do not have to be as heavy as the sfermions, and having them with masses near the EW scale does not pose any conflict with current MSSM constraints. We discuss then some SUSY scenarios with heavy sfermions, from a bottom-up approach, which contain the full Higgs sector, as well as a possible dark matter candidate, with masses near the EW scale, and identify distinctive signals from these scenarios that could be searched at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Even if Split SUSY scenarios with a Higgs sector near the EW scale may seem to be similar to the Split-inspired non-universal Higgs scenarios proposed here, in terms of the mass spectrum, it is important to emphasize a conceptual difference among them. Whereas in the former ones all the heavy states are decoupled, as Split SUSY imposes, we start from a bottom-up approach and work within a generic MSSM where only the sfermion of the first and second generations are very heavy.

  2. Although these parameters are varied within this range, we only select points that satisfy current direct bounds on SUSY masses [58].

  3. A study of constraints imposed by the relic abundance is needed to see whether the LSP in each of these scenarios is an acceptable DM candidate. This analysis is beyond the scope of this work, however, we point out the results from [67] where these constraints are studied in a similar region of the parameter space we scan here. It is found that it is possible to have LSP masses of \(\mathcal{O}\)(100 GeV) consistent with experiments in any of these three scenarios.

  4. On the one hand, we select M 2=μ=1 TeV in order to generate the maximum gaugino–higgsino mixing allowed in this scenario. On the other hand, we set M 3=3 TeV because we want to maintain the spectrum below 1 TeV scale as simple as possible. We keep this criterion in the following sections for this kind of plot.

References

  1. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  3. H. Flacher, M. Goebel, J. Haller, A. Hocker, K. Monig, J. Stelzer, Eur. Phys. J. C 60, 543 (2009) [Erratum: Eur. Phys. J. C 71, 1718 (2011)]. arXiv:0811.0009 [hep-ph]

    Article  ADS  Google Scholar 

  4. J. Erler, Phys. Rev. D 81, 051301 (2010). arXiv:1002.1320 [hep-ph]

    Article  ADS  Google Scholar 

  5. J.R. Espinosa, C. Grojean, M. Muhlleitner, M. Trott, J. High Energy Phys. 1212, 045 (2012). arXiv:1207.1717 [hep-ph]

    Article  ADS  Google Scholar 

  6. P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, J. High Energy Phys. 1206, 117 (2012). arXiv:1203.4254 [hep-ph]

    Article  ADS  Google Scholar 

  7. J. Ellis, Int. J. Mod. Phys. A 25, 2409 (2010). arXiv:1004.0648 [hep-ph]

    Article  ADS  Google Scholar 

  8. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  9. I.J.R. Aitchison, hep-ph/0505105

  10. D.J.H. Chung, L.L. Everett, G.L. Kane, S.F. King, J.D. Lykken, L.-T. Wang, Phys. Rep. 407, 1 (2005). hep-ph/0312378

    Article  ADS  Google Scholar 

  11. M.S. Carena, H.E. Haber, Prog. Part. Nucl. Phys. 50, 63 (2003). hep-ph/0208209

    Article  ADS  Google Scholar 

  12. M. Carena et al., Report of the Tevatron Higgs working group. arXiv:hep-ph/0010338

  13. S. Chatrchyan et al. (CMS Collaboration), CMS-PAS-SUS-11-016

  14. S. Chatrchyan et al. (CMS Collaboration), CMS-PAS-SUS-12-016

  15. S. Chatrchyan et al. (CMS Collaboration), CMS-PAS-SUS-12-017

  16. G. Aad et al. (ATLAS Collaboration), ATLAS-CONF-2012-103

  17. G. Aad et al. (ATLAS Collaboration), ATLAS-CONF-2012-104

  18. G. Aad et al. (ATLAS Collaboration), ATLAS-CONF-2012-105

  19. G. Aad et al. (ATLAS Collaboration), ATLAS-CONF-2012-109

  20. F. Gabbiani, E. Gabrielli, A. Masiero, L. Silvestrini, Nucl. Phys. B 477, 321 (1996). hep-ph/9604387

    Article  ADS  Google Scholar 

  21. N. Arkani-Hamed, H. Murayama, Phys. Rev. D 56, 6733 (1997). hep-ph/9703259

    Article  ADS  Google Scholar 

  22. J.L. Diaz-Cruz, J. Ferrandis, Phys. Rev. D 72, 035003 (2005). hep-ph/0504094

    Article  ADS  Google Scholar 

  23. H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85, 075010 (2012). arXiv:1112.3017 [hep-ph]

    Article  ADS  Google Scholar 

  24. A. Arbey, M. Battaglia, F. Mahmoudi, Eur. Phys. J. C 72, 1906 (2012). arXiv:1112.3032 [hep-ph]

    Article  ADS  Google Scholar 

  25. N. Arkani-Hamed, S. Dimopoulos, J. High Energy Phys. 0506, 073 (2005). hep-th/0405159

    Article  ADS  Google Scholar 

  26. G.F. Giudice, A. Romanino, Nucl. Phys. B 699, 65 (2004) [Erratum: Nucl. Phys. B 706, 65 (2005)]. [hep-ph/0406088]

    Article  ADS  MATH  Google Scholar 

  27. N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice, A. Romanino, Nucl. Phys. B 709, 3 (2005). hep-ph/0409232

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. S.-h. Zhu, Phys. Lett. B 604, 207 (2004). hep-ph/0407072

    Article  ADS  Google Scholar 

  29. W. Kilian, T. Plehn, P. Richardson, E. Schmidt, Eur. Phys. J. C 39, 229 (2005). hep-ph/0408088

    Article  ADS  Google Scholar 

  30. J.L. Hewett, B. Lillie, M. Masip, T.G. Rizzo, J. High Energy Phys. 0409, 070 (2004). hep-ph/0408248

    Article  ADS  Google Scholar 

  31. A. Masiero, S. Profumo, P. Ullio, Nucl. Phys. B 712, 86 (2005). hep-ph/0412058

    Article  ADS  Google Scholar 

  32. P. Gambino, G.F. Giudice, P. Slavich, Nucl. Phys. B 726, 35 (2005). hep-ph/0506214

    Article  ADS  MATH  Google Scholar 

  33. W. Kilian, T. Plehn, P. Richardson, E. Schmidt, eConf C 050318, 0205 (2005). hep-ph/0507137

    Google Scholar 

  34. S.K. Gupta, B. Mukhopadhyaya, S.K. Rai, Phys. Rev. D 73, 075006 (2006). hep-ph/0510306

    Article  ADS  Google Scholar 

  35. F. Wang, W. Wang, J.M. Yang, Eur. Phys. J. C 46, 521 (2006). hep-ph/0512133

    Article  ADS  Google Scholar 

  36. N. Kersting, Eur. Phys. J. C 63, 23 (2009). arXiv:0806.4238 [hep-ph]

    Article  ADS  Google Scholar 

  37. J.-J. Cao, W.-Y. Wang, J.M. Yang, Phys. Lett. B 706, 72 (2011). arXiv:1108.2834 [hep-ph]

    Article  ADS  Google Scholar 

  38. D.S.M. Alves, E. Izaguirre, J.G. Wacker, arXiv:1108.3390 [hep-ph]

  39. G.F. Giudice, A. Strumia, Nucl. Phys. B 858, 63 (2012). arXiv:1108.6077 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  40. L.J. Hall, Y. Nomura, J. High Energy Phys. 1201, 082 (2012). arXiv:1111.4519 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  41. M. Dhuria, A. Misra, arXiv:1207.2774 [hep-ph]

  42. A. Arvanitaki, N. Craig, S. Dimopoulos, G. Villadoro. arXiv:1210.0555 [hep-ph]

  43. L.J. Hall, Y. Nomura, S. Shirai, J. High Energy Phys. 1301, 036 (2013). arXiv:1210.2395 [hep-ph]

    Article  ADS  Google Scholar 

  44. J. Unwin, Phys. Rev. D 86, 095002 (2012). arXiv:1210.4936 [hep-ph]

    Article  ADS  Google Scholar 

  45. M. Ibe, T.T. Yanagida, Phys. Lett. B 709, 374 (2012). arXiv:1112.2462 [hep-ph]

    Article  ADS  Google Scholar 

  46. M. Ibe, S. Matsumoto, T.T. Yanagida, Phys. Rev. D 85, 095011 (2012). arXiv:1202.2253 [hep-ph]

    Article  ADS  Google Scholar 

  47. B. Bhattacherjee, B. Feldstein, M. Ibe, S. Matsumoto, T.T. Yanagida, arXiv:1207.5453 [hep-ph]

  48. J.L. Diaz-Cruz, D.K. Ghosh, S. Moretti, Phys. Lett. B 679, 376 (2009). arXiv:0809.5158 [hep-ph]

    Article  ADS  Google Scholar 

  49. A. Delgado, G.F. Giudice, Phys. Lett. B 627, 155 (2005). hep-ph/0506217

    Article  ADS  Google Scholar 

  50. M.A. Diaz, P. Fileviez Perez, C. Mora, Phys. Rev. D 79, 013005 (2009). hep-ph/0605285

    Article  ADS  Google Scholar 

  51. M.A. Diaz, F. Garay, B. Koch, Phys. Rev. D 80, 113005 (2009). arXiv:0910.2987 [hep-ph]

    Article  ADS  Google Scholar 

  52. M.A. Diaz, S.G. Saenz, B. Koch, Phys. Rev. D 84, 055007 (2011). arXiv:1106.0308 [hep-ph]

    Article  ADS  Google Scholar 

  53. A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. B 38, 635 (2007). hep-ph/0609292

    ADS  Google Scholar 

  54. A. Djouadi, J.-L. Kneur, G. Moultaka, Comput. Phys. Commun. 176, 426 (2007). hep-ph/0211331

    Article  ADS  MATH  Google Scholar 

  55. M. Muhlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168, 46 (2005). hep-ph/0311167

    Article  ADS  Google Scholar 

  56. A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998). hep-ph/9704448

    Article  ADS  MATH  Google Scholar 

  57. B.C. Allanach, Comput. Phys. Commun. 143, 305 (2002). hep-ph/0104145

    Article  ADS  MATH  Google Scholar 

  58. J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  59. A. Ibarra, Phys. Lett. B 620, 164 (2005). hep-ph/0503160

    Article  ADS  Google Scholar 

  60. N. Bernal, A. Djouadi, P. Slavich, J. High Energy Phys. 0707, 016 (2007). arXiv:0705.1496 [hep-ph]

    Article  ADS  Google Scholar 

  61. G. Aad et al. (ATLAS Collaboration), ATLAS-CONF-2012-127

  62. S. Chatrchyan et al. (CMS Collaboration), CMS-PAS-HIG-12-045

  63. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). hep-ph/9812320

    Article  ADS  MATH  Google Scholar 

  64. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). hep-ph/9812472

    ADS  Google Scholar 

  65. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). hep-ph/0212020

    Article  ADS  Google Scholar 

  66. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, J. High Energy Phys. 0702, 047 (2007). hep-ph/0611326

    Article  ADS  Google Scholar 

  67. D. Hooper, C. Kelso, Phys. Rev. D 85, 094014 (2012). arXiv:1107.3858 [hep-ph]

    Article  ADS  Google Scholar 

  68. A. Djouadi, Y. Mambrini, M. Muhlleitner, Eur. Phys. J. C 20, 563 (2001). hep-ph/0104115

    Article  ADS  Google Scholar 

  69. N. Craig, M. McCullough, J. Thaler, J. High Energy Phys. 1206, 046 (2012). arXiv:1203.1622 [hep-ph]

    Article  ADS  Google Scholar 

  70. C. Balazs, J.L. Diaz-Cruz, H.J. He, T.M.P. Tait, C.P. Yuan, Phys. Rev. D 59, 055016 (1999). hep-ph/9807349

    Article  ADS  Google Scholar 

  71. J.L. Diaz-Cruz, H.-J. He, T.M.P. Tait, C.P. Yuan, Phys. Rev. Lett. 80, 4641 (1998). hep-ph/9802294

    Article  ADS  Google Scholar 

  72. M. Carena, S. Gori, A. Juste, A. Menon, C.E.M. Wagner, L.-T. Wang, J. High Energy Phys. 1207, 091 (2012). arXiv:1203.1041 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Ben Allanach, Sven Heinemeyer and Margarete Muhlleitner for valuable information about SOFTSUSY, FeynHiggs and SUSY-HIT codes, respectively. E.A. and A.S. thank Ken Kiers for fruitful discussions and a careful reading of the manuscript. E.A. is financially supported by a MICINN postdoctoral fellowship (Spain), under grant No. FI-2010-0041, and thanks IFLP-CONICET for hospitality and support. J.L. Diaz-Cruz acknowledges support from CONACYT-SNI (Mexico). This work has been partially supported by ANPCyT (Argentina) under grant no. PICT-PRH 2009-0054 and by CONICET (Argentina) PIP-2011 (E.A., A.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Arganda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arganda, E., Lorenzo Diaz-Cruz, J. & Szynkman, A. Decays of H 0/A 0 in supersymmetric scenarios with heavy sfermions. Eur. Phys. J. C 73, 2384 (2013). https://doi.org/10.1140/epjc/s10052-013-2384-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2384-z

Keywords

Navigation