Skip to main content
Log in

New magnetized squashed black holes—thermodynamics and Hawking radiation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We construct a new exact solution in the 5D Einstein–Maxwell-dilaton gravity describing a magnetized squashed black hole. We calculate its physical characteristics, and derive the Smarr-like relations. The Hawking radiation of the solution is also investigated by calculating the graybody factor for the emission of massless scalar particles in the low-energy regime. In distinction to the case of asymptotically flat magnetized black holes, the thermodynamical characteristics and the Hawking radiation of the solution depend on the external magnetic field, and consequently can be tuned by its variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This solution is actually a limit of a more general solution to the 5D Einstein–Maxwell-dilaton equations we obtained, which is presented in the Appendix.

References

  1. R. Emparan, H. Reall, Living Rev. Relativ. 11, 6 (2008). arXiv:0801.3471 [hep-th]

    ADS  Google Scholar 

  2. Y. Chen, E. Teo, Nucl. Phys. B 850, 253 (2011). arXiv:1011.6464 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. P. Nedkova, S. Yazadjiev, Phys. Rev. D 84, 124040 (2011). arXiv:1109.2838 [hep-th]

    Article  ADS  Google Scholar 

  4. P. Nedkova, S. Yazadjiev, Phys. Rev. D 85, 064021 (2012). arXiv:1112.3326

    Article  ADS  Google Scholar 

  5. R. Cai, L. Cao, N. Ohta, Phys. Lett. B 639, 354 (2006). arXiv:hep-th/0603197

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. H. Ishihara, J. Soda, Phys. Rev. D 76, 064022 (2007). arXiv:hep-th/0702180

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Chen, B. Wang, R. Su, Phys. Rev. D 77, 024039 (2008). arXiv:0710.3240 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Gibbons, C. Pope, H. Römer, Nucl. Phys. B 157, 377 (1979)

    Article  ADS  Google Scholar 

  9. H. Ishihara, K. Matsuno, Prog. Theor. Phys. 116, 417 (2006). arXiv:hep-th/0510094

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. D. Gross, M. Perry, Nucl. Phys. B 226, 29 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  11. R. Sorkin, Phys. Rev. Lett. 51, 87 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Yazadjiev, Phys. Rev. D 73, 064008 (2006). arXiv:gr-qc/0511114

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. S. Yazadjiev, Horizon area-angular momentum-charge-magnetic fluxes inequalities in 5D Einstein–Maxwell-dilaton gravity. arXiv:1301.1548

  14. S. Yazadjiev, in preparation

  15. J. Traschen, D. Fox, Class. Quantum Gravity 21, 289 (2004). arXiv:gr-qc/0103106

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. J. Traschen, Class. Quantum Gravity 21, 1343 (2004). arXiv:hep-th/0308173

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J. Brown, J. York, Phys. Rev. D 47, 1407 (1993). arXiv:gr-qc/9209012

    Article  MathSciNet  ADS  Google Scholar 

  18. D. Kastor, J. Traschen, J. High Energy Phys. 0609, 022 (2006). arXiv:hep-th/0607051

    Article  MathSciNet  ADS  Google Scholar 

  19. P. Townsend, M. Zamaklar, Class. Quantum Gravity 18, 5269 (2006). arXiv:hep-th/0511180

    Article  MathSciNet  ADS  Google Scholar 

  20. C. Hunter, Phys. Rev. D 59, 024009 (1999). arXiv:gr-qc/9807010

    Article  MathSciNet  ADS  Google Scholar 

  21. E. Radu, Mod. Phys. Lett. A 17, 2277 (2002). arXiv:gr-qc/0211035

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. S. Hollands, S. Yazadjiev, Commun. Math. Phys. 283, 749 (2008). arXiv:0707.2775 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  24. W.G. Unruh, Phys. Rev. D 14, 3251 (1976)

    Article  ADS  Google Scholar 

  25. D.N. Page, Phys. Rev. D 13, 198 (1976)

    Article  ADS  Google Scholar 

  26. A. Starobinsky, S. Churilov, Sov. Phys. JETP 38, 1 (1974)

    ADS  Google Scholar 

  27. A. Starobinsky, Sov. Phys. JETP 37, 28 (1973)

    ADS  Google Scholar 

  28. S. Teukolsky, W. Press, Astrophys. J. 193, 443 (1974)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

P.N. would like to thank DAAD for the support, and the Oldenburg University for its kind hospitality. The partial financial support by the Bulgarian National Science Fund under Grant DMU-03/6, and by Sofia University Research Fund under Grant 148/2012 are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petya G. Nedkova.

Appendix

Appendix

The 5D Einstein–Maxwell-dilation equations with a dilaton coupling parameter \(a=\sqrt{8/3}\) possess the following more general black hole solution:

The 1-form W t and the metric functions W and V are given by

(46)

and the Maxwell 2-form is expressed as

$$F = dt\wedge d A_t + d\psi\wedge d A_\psi+ d \phi \wedge d A_\phi, $$

with electromagnetic potentials

(47)

The coordinates vary in the limits 0≤r<∞, 0≤θπ and ϕ is a periodic coordinate with period Δϕ=2π. The parameters γ, r 0 and r + take the same ranges as in Sect. 2, R is expressed as \(R^{2}_{\infty}= r_{0}(r_{0} + r_{+})\), and υ is a second real parameter characterizing the electromagnetic field. In the limit υ=0 the solution reduces to the magnetized black hole which we discussed in Sect. 2.

The solution possesses coordinate singularities at θ=0 (or θ=π), which can be resolved if the coordinates t and ψ are identified with periods Δt=4πsinhγcoshυsinhυr + and Δψ=4π. Consequently, the cross-sections at \(r=t =\mathrm{const.}\), and at \(r = \psi= \mathrm{const.}\) represent Hopf fibration of S 3 with S 1 parameterized by the ψ and t coordinates, respectively. Due to the periodic identification of the time coordinate the solution contains closed time-like curves, meaning that the causality of the spacetime is violated. In the limit at υ=0, however, the fiber bundle associated with the time coordinate becomes trivial and no closed time-like curves occur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedkova, P.G., Yazadjiev, S.S. New magnetized squashed black holes—thermodynamics and Hawking radiation. Eur. Phys. J. C 73, 2377 (2013). https://doi.org/10.1140/epjc/s10052-013-2377-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2377-y

Keywords

Navigation