Skip to main content
Log in

On the Standard Model prediction for \(\mathcal{B}(B_{s,d} \to \mu^{+} \mu^{-})\)

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The decay B s μ + μ is one of the milestones of the flavor program at the LHC. We reappraise its Standard Model prediction. First, by analyzing the theoretical rate in the light of its main parametric dependence, we highlight the importance of a complete evaluation of higher-order electroweak corrections, at present known only in the large-m t limit, and leaving sizable dependence on the definition of electroweak parameters. Using insights from a complete calculation of such corrections for \(K\to\pi\nu\bar{\nu}\) decays, we find a scheme in which NLO electroweak corrections are likely to be negligible. Second, we address the issue of the correspondence between the initial and the final state detected by the experiments, and those used in the theoretical prediction. Particular attention is devoted to the effect of the soft radiation, which has not been discussed for this mode in the previous literature, and that can lead to O(10 %) corrections to the decay rate. The “non-radiative” branching ratio (which is equivalent to the branching ratio fully inclusive of bremsstrahlung radiation) is estimated to be (3.23±0.27)×10−9 for the flavor eigenstate, with the main uncertainty resulting from the value of \(f_{B_{s}}\), followed by the uncertainty due to higher order electroweak corrections. Applying the same strategy to B d μ + μ , we find for its non-radiative branching ratio (1.07±0.10)×10−10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the presence of α em in the normalization of (4) is fictitious: we can eliminate it expressing α em/sin2 θ W in terms of G F and M W , thereby obtaining an expression that is well defined in the limit α em→0.

  2. For the central value of M t in Table 1 we obtain \(m_{t}(m_{t})^{\overline{\mathrm{MS}}, \mathrm{QCD}}= 163.2~\mathrm{GeV}\) and \(m_{t}(m_{t})^{\overline{\mathrm{MS}}, \mathrm{QCD}+\mathrm{EW}}= 164.5~\mathrm{GeV}\).

  3. We thank Tim Gershon and Matteo Palutan for useful discussions regarding this point.

References

  1. R. Aaij et al. (LHCb collaboration), Phys. Rev. Lett. 108, 231801 (2012). arXiv:1203.4493 [hep-ex]

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1204, 033 (2012). arXiv:1203.3976 [hep-ex]

    Article  ADS  Google Scholar 

  3. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 713, 387 (2012). arXiv:1204.0735 [hep-ex]

    Article  ADS  Google Scholar 

  4. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 239903 (2011). arXiv:1107.2304 [hep-ex]

    Article  ADS  Google Scholar 

  5. P. Clarke, Talk on behalf of the LHCb Collaboration, presented at the 2012 Rencontres de Moriond, La Thuile, 3–10 March 2012. http://cdsweb.cern.ch/record/1429149/files/LHCb-TALK-2012-029.pdf

  6. G. Buchalla, A.J. Buras, Nucl. Phys. B 398, 285–300 (1993)

    Article  ADS  Google Scholar 

  7. G. Buchalla, A.J. Buras, Nucl. Phys. B 400, 225–239 (1993)

    Article  ADS  Google Scholar 

  8. M. Misiak, J. Urban, Phys. Lett. B 451, 161–169 (1999). arXiv:hep-ph/9901278

    Article  ADS  Google Scholar 

  9. G. Buchalla, A.J. Buras, Nucl. Phys. B 548, 309–327 (1999). arXiv:hep-ph/9901288

    Article  ADS  Google Scholar 

  10. G. Buchalla, A.J. Buras, Phys. Rev. D 57, 216–223 (1998). arXiv:hep-ph/9707243

    Article  ADS  Google Scholar 

  11. D. Yennie, S.C. Frautschi, H. Suura, Ann. Phys. 13, 379–452 (1961)

    Article  ADS  Google Scholar 

  12. S. Weinberg, Phys. Rev. 140, B516–B524 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  13. G. Isidori, Eur. Phys. J. C 53, 567–571 (2008). arXiv:0709.2439 [hep-ph]

    Article  ADS  Google Scholar 

  14. K. de Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk et al., arXiv:1204.1735 [hep-ph]

  15. K. de Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk et al., arXiv:1204.1737 [hep-ph]

  16. G. Buchalla, A.J. Buras, M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125–1144 (1996). arXiv:hep-ph/9512380

    Article  ADS  Google Scholar 

  17. T. Inami, C. Lim, Prog. Theor. Phys. 65, 297 (1981)

    Article  ADS  Google Scholar 

  18. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  19. K. Chetyrkin, J.H. Kuhn, M. Steinhauser, Comput. Phys. Commun. 133, 43–65 (2000). arXiv:hep-ph/0004189

    Article  ADS  MATH  Google Scholar 

  20. B.A. Kniehl, A. Sirlin, Nucl. Phys. B 458, 35–51 (1996)

    Article  ADS  Google Scholar 

  21. Particle Data Group, ref. [18]. The LEP Electroweak Working Group, http://lepewwg.web.cern.ch

  22. S. Bethke, Eur. Phys. J. C 64, 689–703 (2009). arXiv:0908.1135 [hep-ph]

    Article  ADS  Google Scholar 

  23. UTfit collaboration, www.utfit.org. Averages prepared with the PDG 2012 input. Statistical method described in M. Ciuchini et al., JHEP 0107, 013 (2001). arXiv:hep-ph/0012308

  24. CKMfitter collaboration, ckmfitter.in2p3.fr. Statistical method described in J. Charles et al., Eur. Phys. J. C 41, 1–131 (2005). arXiv:hep-ph/0406184

  25. Tevatron Electroweak Working Group, CDF and D0 Collaborations, arXiv:1107.5255 [hep-ex]

  26. T. Aaltonen et al. (CDF Collaboration, D0 Collaboration), arXiv:1207.1069 [hep-ex]

  27. J. Incandela, talk on behalf of the CMS Collaboration at CERN, 4th July, 2012

  28. CMS Collaboration, HIG-12-020-pas

  29. F. Gianotti, talk on behalf of the ATLAS Collaboration at CERN, 4th July, 2012

  30. ATLAS Collaboration, ATLAS-CONF-2012-093

  31. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  32. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  33. C. Davies, PoS LATTICE2011, 019 (2011). arXiv:1203.3862 [hep-lat]

    Google Scholar 

  34. R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci, A. Vicere, Phys. Lett. B 288, 95 (1992) [Erratum-ibid. B 312, 511 (1993)]. arXiv:hep-ph/9205238

    Article  ADS  Google Scholar 

  35. R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci, A. Vicere, Nucl. Phys. B 409, 105 (1993)

    Article  ADS  Google Scholar 

  36. J. Fleischer, O.V. Tarasov, F. Jegerlehner, Phys. Rev. D 51, 3820 (1995)

    Article  ADS  Google Scholar 

  37. M. Misiak, private communication

  38. C. Bobeth, P. Gambino, M. Gorbahn, U. Haisch, J. High Energy Phys. 0404, 071 (2004). arXiv:hep-ph/0312090

    Article  ADS  Google Scholar 

  39. T. Huber, E. Lunghi, M. Misiak, D. Wyler, Nucl. Phys. B 740, 105 (2006). arXiv:hep-ph/0512066

    Article  ADS  Google Scholar 

  40. M. Misiak, arXiv:1112.5978 [hep-ph]

  41. J. Brod, M. Gorbahn, E. Stamou, Phys. Rev. D 83, 034030 (2011). arXiv:1009.0947 [hep-ph]

    Article  ADS  Google Scholar 

  42. A.J. Buras, Phys. Lett. B 566, 115–119 (2003). arXiv:hep-ph/0303060

    Article  ADS  Google Scholar 

  43. P. Dimopoulos et al. (ETM Collaboration), J. High Energy Phys. 1201, 046 (2012). arXiv:1107.1441 [hep-lat]

    Article  ADS  Google Scholar 

  44. C. McNeile, C. Davies, E. Follana, K. Hornbostel, G. Lepage, Phys. Rev. D 85, 031503 (2012). arXiv:1110.4510 [hep-lat]

    Article  ADS  Google Scholar 

  45. A. Bazavov et al. (Fermilab Lattice and MILC Collaborations), Phys. Rev. D 85, 114506 (2012). arXiv:1112.3051 [hep-lat]

    Article  ADS  Google Scholar 

  46. B. Blossier, J. Bulava, M. Della Morte, M. Donnellan, P. Fritzsch et al., PoS LATTICE2011, 280 (2011). arXiv:1112.6175 [hep-lat]

    Google Scholar 

  47. H. Na, C.J. Monahan, C.T. Davies, R. Horgan, G.P. Lepage et al., arXiv:1202.4914 [hep-lat]

  48. E. Gamiz, C.T. Davies, G.P. Lepage, J. Shigemitsu, M. Wingate (HPQCD Collaboration), Phys. Rev. D 80, 014503 (2009). arXiv:0902.1815 [hep-lat]

    Article  ADS  Google Scholar 

  49. C. Bouchard, E. Freeland, C. Bernard, A. El-Khadra, E. Gamiz et al., PoS LATTICE2011, 274 (2011). arXiv:1112.5642 [hep-lat]

  50. A.J. Buras, J. Girrbach, Acta Phys. Pol. B 43, 1427 (2012). arXiv:1204.5064 [hep-ph]

    Article  Google Scholar 

  51. J. Laiho, E. Lunghi, R.S. Van de Water, Phys. Rev. D 81, 034503 (2010). arXiv:0910.2928 [hep-ph]. Updates available on http://latticeaverages.org/

    Article  ADS  Google Scholar 

  52. P. Janot, Phys. Lett. B 223, 110 (1989)

    Article  ADS  Google Scholar 

  53. F. Low, Phys. Rev. 110, 974–977 (1958)

    Article  ADS  MATH  Google Scholar 

  54. D. Melikhov, N. Nikitin, Phys. Rev. D 70, 114028 (2004). arXiv:hep-ph/0410146

    Article  ADS  Google Scholar 

  55. R. Aaij et al. (LHCb Collaboration), LHCb-CONF-2012-002

Download references

Acknowledgements

We thank Damir Becirevic, Joachim Brod, Fulvia de Fazio, Tim Gershon, Martin Gorbahn, Mikolaj Misiak, Matteo Palutan, Alexey Petrov and Emmanuel Stamou for useful comments and discussions. This work was supported by the EU ERC Advanced Grant FLAVOUR (267104), and by MIUR under contract 2008XM9HLM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Guadagnoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buras, A.J., Girrbach, J., Guadagnoli, D. et al. On the Standard Model prediction for \(\mathcal{B}(B_{s,d} \to \mu^{+} \mu^{-})\) . Eur. Phys. J. C 72, 2172 (2012). https://doi.org/10.1140/epjc/s10052-012-2172-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2172-1

Keywords

Navigation