Skip to main content
Log in

On stability of the electroweak vacuum and the Higgs portal

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In the Standard Model (SM), the Higgs mass around 125 GeV implies that the electroweak vacuum is metastable since the quartic Higgs coupling turns negative at high energies. I point out that a tiny mixing of the Higgs with a heavy singlet can make the electroweak vacuum completely stable. This is due to a tree level correction to the Higgs mass-coupling relation, which survives in the zero-mixing/heavy-singlet limit. Such a situation is experimentally indistinguishable from the SM, unless the Higgs self-coupling can be measured. As a result, Higgs inflation and its variants can still be viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. V. Silveira, A. Zee, Phys. Lett. B 161, 136 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Foot, H. Lew, R.R. Volkas, Phys. Lett. B 272, 67 (1991)

    Article  ADS  Google Scholar 

  3. S. Kanemura, S. Matsumoto, T. Nabeshima, N. Okada, Phys. Rev. D 82, 055026 (2010)

    Article  ADS  Google Scholar 

  4. O. Lebedev, H.M. Lee, Y. Mambrini, Phys. Lett. B 707, 570 (2012)

    Article  ADS  Google Scholar 

  5. F.L. Bezrukov, M. Shaposhnikov, Phys. Lett. B 659, 703 (2008)

    Article  ADS  Google Scholar 

  6. R. Schabinger, J.D. Wells, Phys. Rev. D 72, 093007 (2005)

    Article  ADS  Google Scholar 

  7. B. Patt, F. Wilczek, arXiv:hep-ph/0605188

  8. J. McDonald, Phys. Rev. D 50, 3637–3649 (1994)

    Article  ADS  Google Scholar 

  9. C.P. Burgess, M. Pospelov, T. ter Veldhuis, Nucl. Phys. B 619, 709–728 (2001)

    Article  ADS  Google Scholar 

  10. V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf, G. Shaughnessy, Phys. Rev. D 77, 035005 (2008)

    Article  ADS  Google Scholar 

  11. C. Englert, T. Plehn, D. Zerwas, P.M. Zerwas, Phys. Lett. B 703, 298 (2011)

    Article  ADS  Google Scholar 

  12. C. Englert, T. Plehn, M. Rauch, D. Zerwas, P.M. Zerwas, Phys. Lett. B 707, 512 (2012)

    Article  ADS  Google Scholar 

  13. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto, A. Strumia, arXiv:1112.3022 [hep-ph]

  14. J.R. Espinosa, G.F. Giudice, A. Riotto, J. Cosmol. Astropart. Phys. 0805, 002 (2008)

    Article  ADS  Google Scholar 

  15. ATLAS Collaboration, arXiv:1202.1408 [hep-ex]

  16. S. Chatrchyan et al. (CMS Collaboration), arXiv:1202.1488 [hep-ex]

  17. O. Lebedev, H.M. Lee, Eur. Phys. J. C 71, 1821 (2011)

    Article  ADS  Google Scholar 

  18. M. Bowen, Y. Cui, J.D. Wells, J. High Energy Phys. 0703, 036 (2007)

    Article  ADS  Google Scholar 

  19. I. Low, P. Schwaller, G. Shaughnessy, C.E.M. Wagner, Phys. Rev. D 85, 015009 (2012)

    Article  ADS  Google Scholar 

  20. B. Batell, S. Gori, L.-T. Wang, arXiv:1112.5180 [hep-ph]

  21. A. Djouadi, O. Lebedev, Y. Mambrini, J. Quevillon, arXiv:1112.3299 [hep-ph]

  22. X.-G. He, B. Ren, J. Tandean, arXiv:1112.6364 [hep-ph]

  23. J.F. Kamenik, C. Smith, arXiv:1201.4814 [hep-ph]

  24. Y. Mambrini, Phys. Rev. D 84, 115017 (2011)

    Article  ADS  Google Scholar 

  25. S. Andreas, T. Hambye, M.H.G. Tytgat, J. Cosmol. Astropart. Phys. 0810, 034 (2008)

    Article  ADS  Google Scholar 

  26. G.J. Gounaris, D. Schildknecht, F.M. Renard, Phys. Lett. B 83, 191 (1979)

    Article  ADS  Google Scholar 

  27. V.D. Barger, T. Han, R.J.N. Phillips, Phys. Rev. D 38, 2766 (1988)

    Article  ADS  Google Scholar 

  28. A. Djouadi, W. Kilian, M. Muhlleitner, P.M. Zerwas, Eur. Phys. J. C 10, 27 (1999)

    ADS  Google Scholar 

  29. U. Baur, T. Plehn, D.L. Rainwater, Phys. Rev. D 69, 053004 (2004)

    Article  ADS  Google Scholar 

  30. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee, A. Strumia, arXiv:1203.0237 [hep-ph]

  31. R.N. Lerner, J. McDonald, Phys. Rev. D 80, 123507 (2009)

    Article  ADS  Google Scholar 

  32. U. Langenfeld, S.O. Moch, P. Uwer, arXiv:1006.0097

  33. M. Holthausen, K.S. Lim, M. Lindner, J. High Energy Phys. 1202, 037 (2012)

    Article  ADS  Google Scholar 

  34. M. Gonderinger, Y. Li, H. Patel, M.J. Ramsey-Musolf, J. High Energy Phys. 1001, 053 (2010)

    Article  ADS  Google Scholar 

  35. M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, arXiv:1112.3647 [hep-ph]

  36. C.S. Chen, Y. Tang, arXiv:1202.5717 [hep-ph]

  37. F. Bezrukov, A. Magnin, M. Shaposhnikov, S. Sibiryakov, J. High Energy Phys. 1101, 016 (2011)

    Article  ADS  Google Scholar 

  38. T.E. Clark, B. Liu, S.T. Love, T. ter Veldhuis, Phys. Rev. D 80, 075019 (2009)

    Article  ADS  Google Scholar 

  39. F.L. Bezrukov, A. Magnin, M. Shaposhnikov, Phys. Lett. B 675, 88 (2009)

    Article  ADS  Google Scholar 

  40. F. Bezrukov, M. Shaposhnikov, J. High Energy Phys. 0907, 089 (2009)

    Article  ADS  Google Scholar 

  41. A. De Simone, M.P. Hertzberg, F. Wilczek, Phys. Lett. B 678, 1 (2009)

    Article  ADS  Google Scholar 

  42. A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky, C.F. Steinwachs, arXiv:0910.1041 [hep-ph]

  43. C.P. Burgess, H.M. Lee, M. Trott, J. High Energy Phys. 0909, 103 (2009)

    Article  ADS  Google Scholar 

  44. C.P. Burgess, H.M. Lee, M. Trott, J. High Energy Phys. 1007, 007 (2010)

    Article  ADS  Google Scholar 

  45. J.L.F. Barbon, J.R. Espinosa, Phys. Rev. D 79, 081302 (2009)

    Article  ADS  Google Scholar 

  46. R.N. Lerner, J. McDonald, Phys. Rev. D 82, 103525 (2010)

    Article  ADS  Google Scholar 

  47. G.F. Giudice, H.M. Lee, Phys. Lett. B 694, 294 (2011)

    Article  ADS  Google Scholar 

  48. M.P. Hertzberg, arXiv:1110.5650 [hep-ph]

Download references

Acknowledgement

The author is grateful to H.M. Lee for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Lebedev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, O. On stability of the electroweak vacuum and the Higgs portal. Eur. Phys. J. C 72, 2058 (2012). https://doi.org/10.1140/epjc/s10052-012-2058-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2058-2

Keywords

Navigation