Skip to main content
Log in

Bifurcation analysis of strongly nonlinear injection locked spin torque oscillators

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate analytically and numerically the dynamics of an injection locked in-plane uniform spin torque oscillator for several forcing configurations at large driving amplitudes. For the analysis, the spin wave amplitude equation is used to reduce the dynamics to a general auto oscillator equation in which the forcing is a complex valued function \(\mathcal {F}(p,\psi ) \propto \epsilon _1(p)cos(\psi )+i \epsilon _2(p)sin(\psi )\). Assuming that the oscillator is strongly non-isochronous and/or forced by a power forcing ( \(|\nu \epsilon _1 / \epsilon _2|\gg 1\)), we show that the parameters \(\epsilon _{1,2}(p)\) govern the main bifurcation features of the Arnold tongue diagram: (i) the locking range asymmetry is mainly controlled by the derivative \(d\epsilon _1/dp\), (ii) the loss of stability when the frequency mismatch between the generator and the oscillator increases occurs for a power threshold depending on \(\epsilon _{1,2}(p)\) and (iii) the frequency hysteretic range is related to the transient regime at zero mismatch frequency. Then, the model is compared with the macrospin simulation for driving amplitudes as large as \(10^0-10^3 A/m\) for the magnetic field and \(10^{10}-10^{12} A/m^2\) for the current density. As predicted by the model, the forcing configuration (nature of the driving signal, applied stimuli direction, harmonic orders) affects substantially the oscillator dynamic. However, some discrepancies are observed. In particular, the prediction of the frequency and power locking range boundaries may be misestimated if the hysteretic boundaries are of same magnitude order. Moreover, the misestimation can be of two different types according to the bifurcation type. These effects are a further manifestation of the complexity of the dynamics in non-isochronous auto-oscillators.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data are available upon reasonable request.]

References

  1. J.-V. Kim, Spin-Torque Oscillators; Elsevier Inc., Chapter 6, pp 217–294

  2. W.H. Rippard, M.R. Pufall, S. Kaka, T.J. Silva, S.E. Russek, J.A. Katine, Phys. Rev. Lett. 95, 067203 (2005)

    Article  ADS  Google Scholar 

  3. R. Lehndorff, D.E. Bürgler, C.M. Schneider, Z. Celinski, Appl. Phys. Lett. 97, 142503 (2010)

    Article  ADS  Google Scholar 

  4. A. Hamadeh, G. de Loubens, V.V. Naletov, J. Grollier, C. Ulysse, V. Cros, O. Klein, Phys. Rev. B 85, 140408 (2012)

    Article  ADS  Google Scholar 

  5. T. Hache, T. Weinhold, K. Schultheiss, J. Stigloher, F. Vilsmeier, C. Back, S.S.P.K. Arekapudi, O. Hellwig, J. Fassbender, H. Schultheiss, Appl. Phys. Lett. 114, 102403 (2019)

    Article  ADS  Google Scholar 

  6. S. Urazhdin, P. Tabor, V. Tiberkevich, A. Slavin, Phys. Rev. Lett. 105, 104101 (2010)

    Article  ADS  Google Scholar 

  7. M. Quinsat, J.F. Sierra, I. Firastrau, V. Tiberkevich, A. Slavin, D. Gusakova, L.D. Buda-Prejbeanu, M. Zarudniev, J.-P. Michel, U. Ebels, B. Dieny, M.-C. Cyrille, J.A. Katine, D. Mauri, A. Zeltser, Appl. Phys. Lett. 98, 182503 (2011)

    Article  ADS  Google Scholar 

  8. V.E. Demidov, H. Ulrichs, S.V. Gurevich, S.O. Demokritov, V.S. Tiberkevich, A.N. Slavin, A. Zholud, S. Urazhdin, Nat. Commun. 5, 3179 (2014)

    Article  ADS  Google Scholar 

  9. P.S. Keatley, S.R. Sani, G. Hrkac, S.M. Mohseni, P. Dürrenfeld, J. Åkerman, R.J. Hicken, Phys. Rev. B 94, 094404 (2016)

    Article  ADS  Google Scholar 

  10. E. Jué, M.R. Pufall, W.H. Rippard, Appl. Phys. Lett. 112, 102403 (2018)

    Article  ADS  Google Scholar 

  11. M. Rajabali, R. Ovcharov, R. Khymyn, H. Fulara, A. Kumar, A. Litvinenko, M. Zahedinejad, A. Houshang, A.A. Awad, J. Åkerman, Phys. Rev. Appl. 19, 034070 (2023)

    Article  ADS  Google Scholar 

  12. B. Fang, M. Carpentieri, X. Hao, H. Jiang, J. A. Katine, I. N. Krivorotov, B. Ocker, J. Langer, K. L. Wang, B. Zhang, B. Azzerboni, P. K. Amiri, G. F. Z. Z. Nature Communications, 7, 11259 (2016)

  13. J. Cai, L. Zhang, B. Fang, W. Lv, B. Zhang, G. Finocchio, R. Xiong, S. Liang, Z. Zeng, Appl. Phys. Lett. 114, 192402 (2019)

    Article  ADS  Google Scholar 

  14. G. Finocchio, R. Tomasello, B. Fang, A. Giordano, V. Puliafito, M. Carpentieri, Z. Zeng, Appl. Phys. Lett. 118, 160502 (2021)

    Article  ADS  Google Scholar 

  15. J. Grollier, D. Querlioz, M.D. Stiles, Proc. IEEE 104, 2024–2039 (2016)

    Article  Google Scholar 

  16. D. Markovic, N. Leroux, M. Riou, F. Abreu Araujo, J. Torrejon, D. Querlioz, A. Fukushima, S. Yuasa, J. Trastoy, P. Bortolotti, J. Grollier, Appl. Phys. Lett. 114, 012409 (2019)

    Article  ADS  Google Scholar 

  17. M. Romera et al., Nature 563, 230 (2018)

    Article  ADS  Google Scholar 

  18. D.I. Albertsson, M. Zahedinejad, A. Houshang, R. Khymyn, J. Åkerman, A. Rusu, Appl. Phys. Lett. 118, 112404 (2021)

    Article  ADS  Google Scholar 

  19. A. Houshang, M. Zahedinejad, S. Muralidhar, J. Checiński, R. Khymyn, M. Rajabali, H. Fulara, A.A. Awad, M. Dvornik, J. Åkerman, Phys. Rev. Appl. 17, 014003 (2022)

    Article  ADS  Google Scholar 

  20. A.A. Awad, P. Dürrenfeld, A. Houshang, M. Dvornik, E. Iacocca, D. R. K., J. Åkerman Nature Physics, 13, 292-299 (2017)

  21. J. Turtle, P.-L. Buono, A. Palacios, C. Dabrowski, V. In, P. Longhini, Phys. Rev. B 95, 144412 (2017)

    Article  ADS  Google Scholar 

  22. M.A. Zaks, A. Pikovsky, Euro. Phys. J. B 92, 160 (2019)

    Article  ADS  Google Scholar 

  23. P. Tabor, V. Tiberkevich, A. Slavin, S. Urazhdin, Phys. Rev. B 82, 020407 (2010)

    Article  ADS  Google Scholar 

  24. R. Bonin, G. Bertotti, C. Serpico, I. D. M., M. d’Aquino, The European Physical Journal B , 68, 221–231 (2009)

  25. C. Serpico, R. Bonin, G. Bertotti, M. d’Aquino, I.D. Mayergoyz, IEEE Trans. Mag. 45, 3441–3444 (2009)

    Article  ADS  Google Scholar 

  26. M. d’Aquino, C. Serpico, R. Bonin, G. Bertotti, I.D. Mayergoyz, Phys. Rev. B 82, 064415 (2010)

    Article  ADS  Google Scholar 

  27. S. Perna, L. Lopez-Diaz, M. d’Aquino, S. C., Scientific Reports, 6, 31630 (2016)

  28. T. Yamaguchi, N. Akashi, K. Nakajima, S. Tsunegi, H. Kubota, T. Taniguchi, Phys. Rev. B 100, 224422 (2019)

  29. R. Adler, Proc. IEEE 61, 1380–1385 (1973)

    Article  Google Scholar 

  30. A. Slavin, V. Tiberkevich, IEEE Trans. Mag. 45, 1875–1918 (2009)

    Article  ADS  Google Scholar 

  31. M. d’Aquino, S. Perna, A. Quercia, V. Scalera, C. Serpico, IEEE Trans. Mag. 53, 1–5 (2017)

  32. A. Quercia, M. d’Aquino, V. Scalera, S. Perna, C. Serpico, Physica B: Condensed Matter 2018, 549, 87–90, 11th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2017)

  33. V. Puliafito, Y. Pogoryelov, B. Azzerboni, J. Åkerman, G. Finocchio, IEEE Trans. Nanotechnol. 13, 532–536 (2014)

    Article  ADS  Google Scholar 

  34. S.M. Rezende, F.M. de Aguiar, A. Azevedo, Phys. Rev. B 73, 094402 (2006)

    Article  ADS  Google Scholar 

  35. A. Slavin, P. Kabos, IEEE Trans. Mag. 41, 1264–1273 (2005)

    Article  ADS  Google Scholar 

  36. J. Hem, L.D. Buda-Prejbeanu, U. Ebels, Phys. Rev. B 100, 054414 (2019)

    Article  Google Scholar 

  37. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge Nonlinear Science Series, 2001)

    Book  Google Scholar 

  38. J. Xiao, A. Zangwill, M.D. Stiles, Phys. Rev. B 72, 014446 (2005)

    Article  ADS  Google Scholar 

  39. J. Hem, Mécanismes de Synchronisation Dans Les Oscillateurs à Transfert de Spin. Ph.D. thesis, Grenoble Alpes University, (2018)

  40. M. Tortarolo, B. Lacoste, J. Hem, C. Dieudonné, M.-C. Cyrille, J. A. Katine, D. Mauri, A. Zeltser, L. D. B.-P., U. E., Scientific Reports, 8, 1728 (2018)

  41. Y. Zhou, V. Tiberkevich, G. Consolo, E. Iacocca, B. Azzerboni, A. Slavin, J. Åkerman, Phys. Rev. B 82, 012408 (2010)

    Article  ADS  Google Scholar 

  42. G. Finocchio, M. Carpentieri, A. Giordano, B. Azzerboni, Phys. Rev. B 86, 014438 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J. H. acknowledges financial support from DGA. J. H. would like to thank Julie Chapelain for her support during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the paper.

Corresponding author

Correspondence to L. D. Buda-Prejbeanu.

Appendices

Conversion to \(m_x\), \(m_y\), \(m_z\) Coordinates

The Hamiltonian spin wave formalism consists in transforming the dynamic of the oscillator from the real space variable \(\textbf{m}(t) =(m_x,m_y,m_z)\) to complex valued variables a(t), b(t) and \(c(t)=\sqrt{p}e^{i\phi (t)}\) with the oscillation power p and the free running phase \(\phi (t)\). The relation between c(t) and the complex variable d(t) used in this report is given by: \(d(t)=c(t)exp(-(i \omega _gt)/n)\).

The trajectory orbit \(p=cst\) in c variable can be expressed in the real space by:

$$\begin{aligned} m_x =&\, 1+2p( \frac{\mathcal {B}}{\mathcal {A}} cos(2\phi )-1) \end{aligned}$$
(A.1a)
$$\begin{aligned} m_y =&\, cos(\phi ) \sqrt{2p(1-p+ \frac{\mathcal {B}}{\mathcal {A}} p cos(2\phi ))} \nonumber \\&\left( \sqrt{1+\mathcal {G}( \frac{\mathcal {B}}{\mathcal {A}} )}- Sign( \frac{\mathcal {B}}{\mathcal {A}} )\sqrt{1+\mathcal {G}( \frac{\mathcal {B}}{\mathcal {A}} )}\right) \end{aligned}$$
(A.1b)
$$\begin{aligned} m_z =&\, -sin(\phi ) \sqrt{2p(1-p+ \frac{\mathcal {B}}{\mathcal {A}} p cos(2\phi ))} \nonumber \\&\left( \sqrt{1+\mathcal {G}( \frac{\mathcal {B}}{\mathcal {A}} )}+ Sign( \frac{\mathcal {B}}{\mathcal {A}} )\sqrt{1+\mathcal {G}( \frac{\mathcal {B}}{\mathcal {A}} )}\right) \end{aligned}$$
(A.1c)

With the function \(\mathcal {G}(x)=\sqrt{1-x^2}\), the ellipticity parameter \(-1 \le \mathcal {B}/\mathcal {A}\le 1\) and \(0 \le \phi < 2\pi \). Some orbits are illustrated in Fig. A1.

Fig. 12
figure 12

Theoretical orbits represented in the real space oriented along the \(\textbf{u}_x\) axis for different ellipticities \(\mathcal {B}/\mathcal {A}\) and oscillation power p. a \(\mathcal {B}/\mathcal {A}=0\), b \(\mathcal {B}/\mathcal {A}=-2/3\) and c \(\mathcal {B}/\mathcal {A}\approx -0.91\) (studied IP-STNO). The power \(p_{opp} = 1/(1+|\mathcal {B}/\mathcal {A}|)\) delimits the in-plane precession mode from the out of plane precession mode

Stability Analysis and Hopf Bifurcation

The dynamical system Eq. 3 is resumed:

$$\begin{aligned}&\dot{p}=-2Z(p)+2p \epsilon _1(p) a_g cos{\psi } \end{aligned}$$
(B.2a)
$$\begin{aligned}&\dot{\psi } = n \omega (p) - \omega _g+ n\epsilon _2(p) a_g sin(\psi ) \end{aligned}$$
(B.2b)

To simplify the calculations, we have set \(\theta =0\) and define \(Z(p)=p\Gamma (p)\).

On the first hand, the stationary states of Eq. B.2 must verify the equilibrium conditions \(\dot{p}=0\) and \(\dot{\psi }=0\), which rewrite:

$$\begin{aligned}&cos(\psi )=\frac{Z(p)}{p a_g \epsilon _1(p)} \end{aligned}$$
(B.3a)
$$\begin{aligned}&sin(\psi ) = \frac{-n \omega (p)+\omega _g}{n a_g \epsilon _2(p)} \end{aligned}$$
(B.3b)

On the other hand, the Jacobian matrix J of Eq. B.2 evaluated at the stationary point \((p,\psi )\) is:

$$\begin{aligned} J(p,\psi ) = \begin{bmatrix} -2 Z^{(1)} + 2a_g(\epsilon _1+p \epsilon _1^{(1)})cos(\psi ) &{} -2 p a_g \epsilon _1sin(\psi ) \\ nN + n a_g \epsilon _2^{(1)}sin(\psi ) &{} n a_g \epsilon _2cos(\psi ) \end{bmatrix}\nonumber \\ \end{aligned}$$
(B.4)

Now, we focus on the quantity \(Tr(J(p,\psi ))\):

$$\begin{aligned} Tr(J)=-2Z^{(1)} + 2 a_g(\epsilon _1+p \epsilon _1^{(1)}) cos(\psi ) \nonumber \\ + n a_g \epsilon _2cos(\psi ) \end{aligned}$$
(B.5)

Removing \(\psi \) with Eq. B.3a leads to:

$$\begin{aligned} Tr(J) = \frac{Z}{p} \left( -2\frac{Z^{(1)}p}{Z}+\frac{2(\epsilon _1+p\epsilon _1^{(1)})}{\epsilon _1}+\frac{n \epsilon _2}{\epsilon _1} \right) \end{aligned}$$
(B.6)

Note the useful relation:

$$\begin{aligned} \frac{Z^{(1)}(p)p}{Z(p)} = 1+\frac{p}{\Delta p} \end{aligned}$$
(B.7)

with \(\Delta p=p-p_0\) and \(p_0\) the free running power.

Inserted Eq. B.7 in Eq. B.6 gives:

$$\begin{aligned} Tr(J)=\frac{2Z}{p\Delta p} \left( -p+\frac{p\Delta p \epsilon _1^{(1)}}{\epsilon _1} + \frac{\Delta p n \epsilon _2}{2\epsilon _1} \right) \end{aligned}$$
(B.8)

The threshold power \(p_{h}\) is defined by \(Tr(J(p_{h}))=0\) so that we obtain Eq. 9:

$$\begin{aligned}{} & {} p_h ( p_h - p_0 ) \frac{\epsilon _1^{(1)}(p_h)}{\epsilon _1(p_h)} + (p_h-p_0) \frac{n \epsilon _2(p_h)}{2 \epsilon _1(p_h)} \nonumber \\{} & {} \quad - p_h =0 \end{aligned}$$
(B.9)

Transient regime

The Jacobian matrix \(J(p,\psi )\) Eq. 8 or Eq. B.4 with \(\epsilon _2= 0\) is evaluated at zero detuning (\(\delta =0\), \(p=p_0\), \(\psi =\pi /2\)):

$$\begin{aligned} J(p,\psi ) = \begin{bmatrix} -2 \Gamma _p&{} -2 p a_g \epsilon _1\\ nN &{} 0 \end{bmatrix} \end{aligned}$$
(C.10)

The eigenvalues of the matrix are given by:

$$\begin{aligned} \lambda _{\pm } = -\Gamma _p\left( 1\pm \sqrt{1-\frac{2\Delta \Omega _S}{\Gamma _p}} \right) \end{aligned}$$
(C.11)

The transient regime becomes oscillatory for the condition \(\Delta \Omega _S>\Gamma _p/2\) with the complex eigenvalues:

$$\begin{aligned} \lambda _{\pm } = -\Gamma _p\left( 1\pm i \sqrt{\frac{2\Delta \Omega _S}{\Gamma _p}-1} \right) \end{aligned}$$
(C.12)

We denote \(|\lambda |=|\lambda _{\pm }|\) the frequency of the transient oscillation in absence of damping:

$$\begin{aligned} |\lambda | = \sqrt{2\Gamma _p\Delta \Omega _S} \end{aligned}$$
(C.13)

If the transient regime is oscillatory, one can define the frequency of the pseudo-oscillation in presence of damping [41, 42]:

$$\begin{aligned} \Omega = \sqrt{2\Gamma _p\Delta \Omega _S-\Gamma _p^2} \end{aligned}$$
(C.14)

There is also the resonant frequency of the system \(\omega _{roll-off}\), which can be measured from the phase noise diagram of the oscillator [40]. Resuming the expression of the phase noise Eq.5 in Ref. [40], \(\omega _{roll-off}\) is obtained by maximizing the denominator:

$$\begin{aligned} \omega _{roll-off} = \sqrt{2\Gamma _p\Delta \Omega _S-2\Gamma _p^2} \end{aligned}$$
(C.15)

In our case, the oscillator is strongly non isochronous and the damping \(\Gamma _p\) is weak compared to \(\Delta \Omega _S\), so that the three frequencies become equivalent:

$$\begin{aligned} |\lambda | \approx \Omega \approx \omega _{roll-off} \end{aligned}$$
(C.16)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hem, J., Buda-Prejbeanu, L.D. & Ebels, U. Bifurcation analysis of strongly nonlinear injection locked spin torque oscillators. Eur. Phys. J. B 97, 41 (2024). https://doi.org/10.1140/epjb/s10051-024-00677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00677-5

Navigation