Skip to main content
Log in

Relaxation oscillations and the mechanism in a periodically excited vector field with pitchfork–Hopf bifurcation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The traditional geometric singular perturbation theory and the slow–fast analysis method cannot be directly used to explore the mechanism of the relaxation oscillations in the forced dynamical system in which the exciting frequency is far less than the natural frequency. Furthermore, higher codimensional bifurcations may result in more complicated alternations between the large-amplitude oscillations (spiking states, SPs) and small-amplitude oscillations or at rest (quiescent states, QSs) on the trajectories of the bursting oscillations, called also the mixed mode oscillations. For the purpose, here we present a method to explore the mechanism of the bursting oscillations in the excited oscillator. Without loss of generality, we apply the proposed method to explore the dynamics of the normal form of the vector field with codimension-two pitchfork–Hopf bifurcation at the origin. When the slow-varying parametric excitation is introduced, with the increase in exciting amplitude, different types of bursting oscillations can be observed, the mechanism of which can be obtained by employing the overlap of the transformed phase portraits and the equilibrium branches as well as the bifurcations of the generalized autonomous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  2. Kingni, S.T., Nana, B., Ngueuteu, G.S.M., Woafo, P., Danckaert, J.: Bursting oscillations in a 3D system with asymmetrically distributed equilibria: mechanism, electronic implementation and fractional derivation effect. Chaos, Solitons Fract. 71, 29–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shen, J., Zhou, Z.: Fast-slow dynamics in first-order initial value problems with slowly varying parameters and application to a harvested logistic model. Commun. Nonlinear Sci. Numer. Simul. 19, 2624–2631 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H.M., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54, 211–288 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rinzel, J., Huguet, G.: Nonlinear dynamics of neuronal excitability, oscillations, and coincidence detection. Commun. Pure Appl. Math. 66, 1464–1494 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fraser, S.J.: The steady state and equilibrium approximations: a geometrical picture. J. Chem. Phys. 88, 4732–4738 (1988)

    Article  Google Scholar 

  8. Guckenheimer, J., Harris-Warrick, R., Peck, J., Willms, A.R.: Bifurcation, bursting, and spiking frequency adaptation. J. Comput. Neurosci. 4, 257–277 (1997)

    Article  MATH  Google Scholar 

  9. Wang, C., Zhang, X.: Canards, heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized Holling type III. J. Differ. Equ. 65, 3397–3441 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ai, S., Sadhu, S.: The entry-exit theorem and relaxation oscillations in slow-fast planar systems. J. Differ. Equ. 268, 7220–7249 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aggarwal, M., Cogan, N., Bertram, R.: Where to look and how to look: combining global sensitivity analysis with fast/slow analysis to study multi-timescale oscillations. Math. Biosci. 314, 1–12 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guckenheimer, J., Kuehn, C.: Computing slow manifold of a saddle type. SIAM J. Appl. Dyn. Syst. 8, 854–879 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, Z.D., Li, Y.Y., Bi, Q.S.: Routes to bursting in a periodically driven oscillator. Phys. Lett. A 377, 975–980 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Teka, W., Tabak, J., Bertram, R.: The relationship between two fast/slow analysis techniques for bursting oscillations. Chaos Interdiscip. J. Nonlinear Sci. 22, 043117 (2012)

    Article  MathSciNet  Google Scholar 

  15. Izhikevich, Eugene M.: Neural excitability, spiking and bursting. Int. J. Bifur. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, X.K., Li, S.L., Zhang, Z.D., Bi, Q.S.: Relaxation oscillations induced by an order gap between exciting frequency and natural frequency. Sci. China 60, 289–298 (2017)

    Article  Google Scholar 

  17. Bi, Q.S., Li, S.L., Kurths, J., Zhang, Z.D.: The mechanism of bursting oscillations with different codimensional bifurcations and nonlinear structures. Nonlinear Dyn. 85, 1–13 (2016)

    Article  MathSciNet  Google Scholar 

  18. Wang, X., Li, W., Wu, Y.: Novel results for a class of singular perturbed slow-fast system. Appl. Math. Comput. 225, 795–806 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Li, X.H., Bi, Q.S.: Cusp bursting and slow-fast analysis with two slow parameters in photosensitive Belousov–Zhabotinsky reaction. Chin. Phys. Lett. 30, 070503 (2013)

    Article  Google Scholar 

  20. Bi, Q.S., Ma, R., Zhang, Z.D.: Bifurcation mechanism of the bursting oscillations in periodically excited dynamical system with two time scales. Nonlinear Dyn. 79, 101–110 (2015)

    Article  MathSciNet  Google Scholar 

  21. Dijkstra, K., van Gils, S.A., Janssens, S.G., Kuznetsov, YuA: Pitchfork–Hopf bifurcations in 1D neural field models with transmission delays. Phys. D-Nonlinear Phenom. 297, 88–101 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sanders, J.A.: Normal form theory and spectral sequences. J. Differ. Equ. 192, 536–552 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuznetsov, YuA: Elements of applied bifurcation theory. Appl. Math. Sci. 288, 715–730 (2004)

    Google Scholar 

  24. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinsheng Bi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \kappa&=1/[(ZS^2+ZS-1) w],\nonumber \\ b_2&=-\kappa [(5 ZS^6+10 ZS^5+(-3 w-10) ZS^4 \nonumber \\&\qquad +(-w-20) ZS^3 +(-w^2+6 w+15) ZS^2 \nonumber \\&\qquad +(-w^2-w+10) ZS+w^2-w-10)],\nonumber \\ b_1&=-\kappa ^3 [-7 ZS^{12}-28 ZS^{11}+12 ZS^{10} w \nonumber \\&\qquad +(32 w+112) ZS^9+(2 w^2-28 w+42) ZS^8 \nonumber \\&\qquad +(12 w^2-104 w-224) ZS^7\nonumber \\&\qquad +(-3 w^3+9 w^2+48 w-56) ZS^6\nonumber \\&\qquad +(-5 w^3-26 w^2+136 w+280) ZS^5\nonumber \\&\qquad +(6 w^3-12 w^2-76 w-7) ZS^4 \nonumber \\&\qquad +(7 w^3+28 w^2-72 w-196) ZS^3\nonumber \\&\qquad +(-6 w^3-6 w^2+52 w+56) ZS^2\nonumber \\&\qquad +(-w^3-10 w^2+8 w+56) ZS\nonumber \\&\qquad +w^3+5 w^2-8 w-28],\nonumber \\ b_0&=-\kappa ^3 [3 ZS^{18}+18 ZS^{17}-9 ZS^{16} w+18 ZS^{16}\nonumber \\&\qquad -43 ZS^{15} w-ZS^{14} w^2-84 ZS^{15}-14 ZS^{14} w\nonumber \\&\qquad -17 ZS^{13} w^2+3 ZS^{12} w^3-153 ZS^{14}+201 ZS^{13} w\nonumber \\&\qquad -52 ZS^{12} w^2+11 ZS^{11} w^3+198 ZS^{13}+167 ZS^{12} w \nonumber \\&\qquad +8 ZS^{11} w^2-5 ZS^{10} w^3+3 ZS^9 w^4+462 ZS^{12}\nonumber \\&\qquad -482 ZS^{11} w+180 ZS^{10} w^2-50 ZS^9 w^3+9 ZS^8 w^4\nonumber \\&\qquad -360 ZS^{11}-396 ZS^{10} w+44 ZS^9 w^2-3 ZS^8 w^3\nonumber \\&\qquad -ZS^7 w^4-819 ZS^10+794 ZS^9 w-299 ZS^8 w^2\nonumber \\&\qquad +95 ZS^7 w^3-18 ZS^6 w^4+582 ZS^9+433 ZS^8 w\nonumber \\&\qquad -28 ZS^7 w^2-6 ZS^6 w^3+918 ZS^8-907 ZS^7 w\nonumber \\&\qquad +296 ZS^6 w^2-99 ZS^5 w^3+14 ZS^4 w^4-756 ZS^7\nonumber \\&\qquad -174 ZS^6 w-61 ZS^5 w^2+25 ZS^4 w^3-3 ZS^3 w^4\nonumber \\&\qquad -603 ZS^6+641 ZS^5 w-143 ZS^4 w^2+46 ZS^3 w^3\nonumber \\&\qquad -3 ZS^2 w^4+666 ZS^5-67 ZS^4 w+76 ZS^3 w^2\nonumber \\&\qquad -17 ZS^2 w^3+ZS w^4+162 ZS^4-232 ZS^3 w\nonumber \\&\qquad +13 ZS^2 w^2-7 ZS w^3-336 ZS^3+72 ZS^2 w\nonumber \\&\qquad -22 ZS w^2+3 w^3+36 ZS^2+28 ZS w+6 w^2\nonumber \\&\qquad +72 ZS-12 w-24]. \end{aligned}$$
(23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Zhang, Z. & Bi, Q. Relaxation oscillations and the mechanism in a periodically excited vector field with pitchfork–Hopf bifurcation. Nonlinear Dyn 101, 37–51 (2020). https://doi.org/10.1007/s11071-020-05795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05795-0

Keywords

Navigation