Skip to main content
Log in

Strain effect on band structure and surface reactivity of ZnO monolayer

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using first-principles calculations, we systemically investigate the strain effect on band structure and surface reactivity of ZnO monolayer (ML). The change of lattice size with the strain affects the charge distribution from O atoms to Zn atoms. The bandgap of ZnO ML changes nonlinearly under the uniaxial strain and linear continuously under the biaxial strain. After adsorbing CO, the ZnO ML roughly maintains the planar structure with the tensile strain while becomes corrugated with the compressive strain. The interaction between the active Zn and the C atom results in charge transmission from the Zn to the O atom and the fluctuation of the ZnO ML. ZnO ML has the most surface adsorption of CO under a biaxial compressive strain, armchair direction the second and zigzag the third. The inequivalence of the strain directions can be explained by the effective mass of the atoms. The surface adsorption and catalytic activity of CO enhance with the increasing strain applied on the ZnO ML. These findings are expected to play a guiding role in the future design of ZnO-based 2D nano-electronics.

Graphical abstract

PDOS of active Zn centers in ZnO ML with biaxial strains. The strains are marked on the right side. The black dashed line marks the Fermi level. The red dashed arrows mark the trend of the DOS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

Data are openly available in a public repository.

References

  1. C.L. Freeman, F. Claeyssens, N. Allan, J.H. Harding, Phys. Rev. Lett. 96, 066102 (2006)

    Article  ADS  Google Scholar 

  2. C. Tusche, H.L. Meyerheim, J. Kirschner, Phys. Rev. Lett. 99, 8171 (2007)

    Article  Google Scholar 

  3. X. Deng, K. Yao, K. Sun, W.X. Li, J. Lee, C. Matranga, J. Phys. Chem. C 117, 11211 (2013)

    Article  Google Scholar 

  4. R.S. Jacobsen, K.N. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, Nature 441, 199 (2006)

    Article  ADS  Google Scholar 

  5. M.R. Falvo, G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn, R. Superfifine, Nature 389, 582 (1997)

    Article  ADS  Google Scholar 

  6. Y.Q. Cai, A.H. Zhang, Y.P. Feng, C. Zhang, H.F. Teoh, G.W. Ho, J. Chem. Phys. 131, 224701 (2009)

    Article  ADS  Google Scholar 

  7. Y.D. Wang, N. Lu, H.B. Xu, G. Shi, M.J. Xu, X.W. Lin, H.B. Li, W.T. Wang, D.P. Qi, Y.Q. Lu, L.F. Chi, Nano Res. 3, 520 (2010)

    Article  Google Scholar 

  8. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Nature 457, 706 (2009)

    Article  ADS  Google Scholar 

  9. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  10. A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. van der Zant, N. Agrait, G. Rubio-Bollinger, Nanoscale Res. Lett. 7, 1 (2012)

    Article  Google Scholar 

  11. Z.C. Tu, J. Comput. Theor. Nanosci. Theor. Nanosci. 7, 1182 (2010)

    Article  Google Scholar 

  12. G. Vilé, B. Bridier, J. Wichert, J. Pérez-Ramírez, Angew. Chem. Int. Ed. Chem. Int. Ed. 51, 8620 (2012)

    Article  Google Scholar 

  13. S.G. Kumar, K.S.R.K. Rao, RSC Adv. 5 (2014)

  14. J. Wang, G. Li, Z. Li, C. Tang, Z. Feng, H. An, H. Liu, T. Liu, C. Li, Sci. Adv. 3, e1701290 (2017)

    Article  ADS  Google Scholar 

  15. E.J. Kan, H.J. Xiang, F. Wu, C. Tian, C. Lee, J.L. Yang, M.-H. Whangbo, Appl. Phys. Lett. 97, 122503 (2010)

    Article  ADS  Google Scholar 

  16. Q. Chen, J. Wang, L. Zhu, S. Wang, F. Ding, J. Chem. Phys. 132, 204703 (2010)

    Article  ADS  Google Scholar 

  17. H. Behera, G. Mukhopadhyay, Phys. Lett. A A 376, 3287 (2012)

    Article  ADS  Google Scholar 

  18. R. Wischert, P. Laurent, C. Copéret, F. Delbecq, P. Sautet, J. Am. Chem. Soc. 134, 14430 (2012)

    Article  Google Scholar 

  19. Z.Q. Huang, L.P. Liu, S. Qi, S. Zhang, Y. Qu, C. Chang, ACS Catal.Catal. 8, 546 (2018)

    Article  Google Scholar 

  20. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  21. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  ADS  Google Scholar 

  22. B. Delley, J. Phys. Chem. 100, 6107 (1996)

    Article  Google Scholar 

  23. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    Article  ADS  Google Scholar 

  24. B. Delley, D.E. Ellis, A.J. Freeman, E.J. Baerends, D. Post, Phys. Rev. B 27, 2132 (1983)

    Article  ADS  Google Scholar 

  25. X.H. Peng, S. Ganti, A. Alizadeh, P. Sharma, S.K. Kumar, S.K. Nayak, Phys. Rev. B 74, 035339 (2006)

    Article  ADS  Google Scholar 

  26. X. Peng, Q. Wei, A. Copple, Phys. Rev. 90, 085402 (2014)

    Article  Google Scholar 

  27. D. Wu, M.G. Lagally, F. Liu, Phys. Rev. Lett. 107, 236101 (2011)

    Article  ADS  Google Scholar 

  28. J. Lee, D.C. Sorescu, X. Deng, J. Phys. Chem. Lett. 7, 1335 (2016)

    Article  Google Scholar 

  29. B. Zheng, P. Hermet, L. Henrard, ACS Nano 4, 4165 (2010)

    Article  Google Scholar 

  30. L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Adv. Mater. 21, 4726 (2009)

    Article  Google Scholar 

  31. M. Mavrikakis, B. Hammer, J.K. Nørskov, Phys. Rev. Lett. 81, 2819 (1998)

    Article  ADS  Google Scholar 

  32. T. AditMaark, A.A. Peterson, J. Phys. Chem. C 118, 4275 (2014)

    Article  Google Scholar 

  33. M. Escudero-Escribano, P. Malacrida, M.H. Hansen, U.G. Vej-Hansen, I. Chorkendorff, Science 352, 73 (2016)

    Article  ADS  Google Scholar 

  34. L. Wang, Z. Zeng, W. Gao, T. Maxson, J. Greeley, Science 363, 870 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Wenhua College Research Project under the project Grant number 2020Y09.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the paper.

Corresponding author

Correspondence to Wen Yu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Wang, X. Strain effect on band structure and surface reactivity of ZnO monolayer. Eur. Phys. J. B 96, 146 (2023). https://doi.org/10.1140/epjb/s10051-023-00617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00617-9

Navigation