Skip to main content
Log in

Critical phenomena in complex networks: from scale-free to random networks

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Within the conventional statistical physics framework, we study critical phenomena in configuration network models with hidden variables controlling links between pairs of nodes. We obtain analytical expressions for the average node degree, the expected number of edges in the graph, and the Landau and Helmholtz free energies. We demonstrate that the network’s temperature controls the average node degree in the whole network. We also show that phase transition in an asymptotically sparse network leads to fundamental structural changes in the network topology. Below the critical temperature, the graph is completely disconnected; above the critical temperature, the graph becomes connected, and a giant component appears. Increasing temperature changes the degree distribution from power-degree for lower temperatures to a Poisson-like distribution for high temperatures. Our findings suggest that temperature might be an inalienable property of real networks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

No data associated in the manuscript.

References

  1. B. Bollobás, Random Graphs (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  2. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University Press, Oxford, 2003)

    Book  Google Scholar 

  3. G. Caldarelli, Scale-Free Networks: Complex Webs in Nature, and Technology (Oxford University Press, Oxford, 2007)

    Book  Google Scholar 

  4. A. Barrat, M. Barthelemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  5. A.-L. Barabási, Network Science (Cambridge University Press, Cambridge, 2016)

    Google Scholar 

  6. M. Newman, Networks (Oxford University Press, Oxford, 2018)

    Book  Google Scholar 

  7. S.N. Dorogovtsev, J.F.F. Mendes, The Nature of Complex Networks (Oxford University Press, Oxford, 2022)

    Book  Google Scholar 

  8. R. Albert, A.-L. Barabási, Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002). https://doi.org/10.1103/RevModPhys.74.47

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Small, L. Hou, L. Zhang, Random complex networks. Natl. Sci. Rev. 1(3), 357–367 (2014). https://doi.org/10.1093/nsr/nwu021

    Article  Google Scholar 

  10. J. Kwapień, S. Drozdz, Physical approach to complex systems. Phys. Rep. 515(3), 115–226 (2012). https://doi.org/10.1016/j.physrep.2012.01.007

    Article  MathSciNet  ADS  Google Scholar 

  11. D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998). https://doi.org/10.1038/30918

    Article  ADS  Google Scholar 

  12. A.-L. Barabási, Scale-free networks: a decade and beyond. Science 325(5939), 412–413 (2009). https://doi.org/10.1126/science.1173299

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Girvan, M.E.J. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799

    Article  MathSciNet  ADS  Google Scholar 

  14. I. Voitalov, P. van der Hoorn, R. van der Hofstad, D. Krioukov, Scale-free networks well done. Phys. Rev. Res. 1, 033034 (2019). https://doi.org/10.1103/PhysRevResearch.1.033034

    Article  Google Scholar 

  15. G. Bianconi, Entropy of network ensembles. Phys. Rev. E 79, 036114 (2009). https://doi.org/10.1103/PhysRevE.79.036114

    Article  MathSciNet  ADS  Google Scholar 

  16. D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000). https://doi.org/10.1103/PhysRevLett.85.5468

    Article  ADS  Google Scholar 

  17. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275–1335 (2008). https://doi.org/10.1103/RevModPhys.80.1275

    Article  ADS  Google Scholar 

  18. J. Park, M.E.J. Newman, Statistical mechanics of networks. Phys. Rev. E 70, 066117 (2004). https://doi.org/10.1103/PhysRevE.70.066117

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Garlaschelli, M.I. Loffredo, Maximum likelihood: extracting unbiased information from complex networks. Phys. Rev. E 78, 015101 (2008). https://doi.org/10.1103/PhysRevE.78.015101

    Article  ADS  Google Scholar 

  20. G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, G. Caldarelli, The statistical physics of real-world networks. Nat. Rev. Phys. 1(1), 58–71 (2019). https://doi.org/10.1038/s42254-018-0002-6

    Article  Google Scholar 

  21. G. Robins, P. Pattison, Y. Kalish, D. Lusher, An introduction to exponential random graph (\(p*\)) models for social networks. Soc. Netw. 29(2), 173–191 (2007). https://doi.org/10.1016/j.socnet.2006.08.002

    Article  Google Scholar 

  22. P.W. Holland, S. Leinhardt, An exponential family of probability distributions for directed graphs. J. Am. Stat. Assoc. 76(373), 33–50 (1981). https://doi.org/10.2307/2287037

    Article  MathSciNet  Google Scholar 

  23. S. Ghafouri, S.H. Khasteh, A survey on exponential random graph models: an application perspective. PeerJ Comput. Sci. 6, 269–269 (2020). https://doi.org/10.7717/peerj-cs.269

    Article  Google Scholar 

  24. D. Lusher, J. Koskine (eds.), G.R., Exponential random graph models for social networks theory, methods, and applications. In Structural Analysis in the Social Sciences, vol 35 (Cambridge University Press, Cambridge, 2012)

  25. V. Amati, A. Lomi, A. Mira, Social network modeling. Annu. Rev. Stat. Appl. 5(1), 343–369 (2018). https://doi.org/10.1146/annurev-statistics-031017-100746

    Article  MathSciNet  Google Scholar 

  26. J. van der Pol, Introduction to network modeling using exponential random graph models (ergm): theory and an application using R-project. Comput. Econ. 54(3), 845–875 (2019). https://doi.org/10.1007/s10614-018-9853-2

    Article  Google Scholar 

  27. A. Glos, A. Krawiec, Ł Pawela, Asymptotic entropy of the Gibbs state of complex networks. Sci. Rep. 11(1), 311 (2021). https://doi.org/10.1038/s41598-020-78626-2

    Article  ADS  Google Scholar 

  28. M.E.J. Newman, S.H. Strogatz, D.J. Watts, Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001). https://doi.org/10.1103/PhysRevE.64.026118

    Article  ADS  Google Scholar 

  29. M.E.J. Newman, The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003). https://doi.org/10.1137/S003614450342480

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera, (eds.): Statistical Mechanics of Complex Networks. Lecture Notes in Physics 625. Springer, New York (2003)

  31. D. Garlaschelli, S.E. Ahnert, T.M.A. Fink, G. Caldarelli, Low-temperature behaviour of social and economic networks. Entropy 15(8), 3148–3169 (2013). https://doi.org/10.3390/e15083238

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Krioukov, F. Papadopoulos, A. Vahdat, M. Boguñá, Curvature and temperature of complex networks. Phys. Rev. E 80, 035101 (2009). https://doi.org/10.1103/PhysRevE.80.035101

    Article  ADS  Google Scholar 

  33. D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá, Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106 (2010). https://doi.org/10.1103/PhysRevE.82.036106

    Article  MathSciNet  ADS  Google Scholar 

  34. A.I. Nesterov, P.H. Mata Villafuerte, Complex networks in the framework of nonassociative geometry. Phys. Rev. E 101, 032302 (2020). https://doi.org/10.1103/PhysRevE.101.032302

    Article  MathSciNet  ADS  Google Scholar 

  35. C. Nicolini, V. Vlasov, A. Bifone, Thermodynamics of network model fitting with spectral entropies. Phys. Rev. E 98, 022322 (2018). https://doi.org/10.1103/PhysRevE.98.022322

    Article  ADS  Google Scholar 

  36. C. Wang, X. Li, E. Bertino, Network temperature: a novel statistical index for networks measurement and management. ACM Trans. Internet Technol. 22(3) (2022). https://doi.org/10.1145/3511093

  37. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006). https://doi.org/10.1016/j.physrep.2005.10.009

  38. T. Squartini, D. Garlaschelli, Maximum-entropy networks: pattern detection, network reconstruction and graph combinatorics (Springer, Cham, 2017)

    Book  Google Scholar 

  39. P. van der Hoorn, G. Lippner, D. Krioukov, Sparse maximum-entropy random graphs with a given power-law degree distribution. J. Stat. Phys. 173(3), 806–844 (2018). https://doi.org/10.1007/s10955-017-1887-7

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Erdéley, W. Magnus, F. Oberhettinger, Higher Transcendental Functions, vol. I (McGraw-Hill, New York, 1953)

  41. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  42. H.S. Wilf, Generating functionology (A K Peters, Wellesley, 2006)

    Google Scholar 

  43. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions (Dover, New York, 1965)

  44. M. Li, R.-R. Liu, L. Lü, M.-B. Hu, S. Xu, Y.-C. Zhang, Percolation on complex networks: theory and application. Phys. Rep. 907, 1–68 (2021). https://doi.org/10.1016/j.physrep.2020.12.003

    Article  MathSciNet  ADS  Google Scholar 

  45. M. Molloy, B. Reed, A critical point for random graphs with a given degree sequence. Random Struct. Algor. 6(2–3), 161–180 (1995). https://doi.org/10.1002/rsa.3240060204

    Article  MathSciNet  Google Scholar 

  46. R. Cohen, D. ben-Avraham, S. Havlin, Percolation critical exponents in scale-free networks. Phys. Rev. E 66, 036113 (2002). https://doi.org/10.1103/PhysRevE.66.036113

    Article  ADS  Google Scholar 

  47. M. Boguñá, R. Pastor-Satorras, Class of correlated random networks with hidden variables. Phys. Rev. E 68, 036112 (2003). https://doi.org/10.1103/PhysRevE.68.036112

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the CONACYT.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the paper.

Corresponding author

Correspondence to Alexander Nesterov.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 461 KB)

Appendices

A Generalized configuration model: \(\mu < \varepsilon _0\)

In this section, we will discuss a general configuration model with exponential distribution of the density of states, assuming that the chemical potential and energy are limited by a maximum value of \(\varepsilon _0\) so that \(\mu \le \varepsilon _0\) and \(0 \le \varepsilon _i \le \varepsilon _0\). By imposing the standard normalization condition, \(\int _0^{\varepsilon _0 }\rho (\varepsilon ) \textrm{d} \varepsilon =1\), we obtain

$$\begin{aligned} \rho _g(\varepsilon ) = \,&\frac{\alpha \beta e^{\alpha \beta (\varepsilon - \varepsilon _0/2)}}{2\sinh (a\beta \varepsilon _0/2)}, \quad \textrm{Type} \, A \end{aligned}$$
(91)
$$\begin{aligned} \rho _d(\varepsilon ) = \,&\frac{\alpha \beta e^{-a \beta (\varepsilon - \varepsilon _0/2)}}{2\sinh (a\beta \varepsilon _0/2)}, \quad \textrm{Type} \, B \end{aligned}$$
(92)

where \(\alpha = \beta _c (\gamma -1)/\beta \), and \(\beta _c =1/T_c\) is a constant with dimension of inverse temperature. The computation of the expected vertex degree \( {\bar{k}} (\varepsilon )\), expected number of links L, and the Landau free energy \(\Omega \) yields

  • Type A

    $$\begin{aligned}&{\bar{k}}_g(\varepsilon ) = \frac{N-1}{2\sinh (\alpha \beta \varepsilon _0/2)} \Big ( e^{\alpha \beta \varepsilon _0/2 } \nonumber \\&\qquad \times {}_{2}F_{1} \big (1, \alpha ; 1+\alpha ;-e^{ \beta (\varepsilon + \varepsilon _0- \mu )} \big ) \nonumber \\&\qquad - e^{-\alpha \beta \varepsilon _0 /2}{}_{2}F_{1} \big (1, \alpha ; 1+\alpha ;- e^{ \beta (\varepsilon -\mu )} \big ) \Big ) , \end{aligned}$$
    (93)
    $$\begin{aligned}&L_g= \frac{N(N-1) }{8\sinh ^2(\alpha \beta \varepsilon _0/2)} \Big ( e^{\alpha \beta \varepsilon _0 } \nonumber \\&\qquad \times {}_{3}F_{2} \big (1, \alpha , \alpha ; 1+\alpha , 1+\alpha ;- e^{ \beta (2 \varepsilon _0 - \mu )} \big ) \nonumber \\&\qquad - 2 {}_{3}F_{2} \big (1, \alpha , \alpha ; 1+\alpha , 1+\alpha ;- e^{ \beta (\varepsilon _0 - \mu )}\big ) \nonumber \\&\qquad + e^{ -\alpha \beta \varepsilon _0} {}_{3}F_{2}\big (1, \alpha , \alpha ; 1+\alpha , 1+\alpha ;- e^{ -\beta \mu } \big )\Big ), \end{aligned}$$
    (94)
    $$\begin{aligned}&\Omega _g= -\frac{1}{a \beta }L_g - \frac{N(N-1) }{8 \beta \sinh ^2(\alpha \beta \varepsilon _0/2)} \Big ( e^{\alpha \beta \varepsilon _0} \nonumber \\ {}&\qquad \times \ln \big (1 + e^{\beta (\mu - 2\varepsilon _0)} \big ) \nonumber \\&\qquad -2\ln \big (1 + e^{\beta (\mu - \varepsilon _0)} \big ) +e^{-\alpha \beta \varepsilon _0} \ln \big (1 + e^{\beta \mu } \big )\nonumber \\&\qquad + e^{\alpha \beta \varepsilon _0} \Phi (-e^{\beta (2\varepsilon _0-\mu )},1,\alpha ) \big ) \nonumber \\&\qquad -2 \Phi (-e^{\beta (\varepsilon _0-\mu )},1,\alpha ) \big ) + e^{-\alpha \beta \varepsilon _0}\Phi (-e^{-\beta \mu },1,\alpha ) \Big ) , \end{aligned}$$
    (95)
  • Type B

    $$\begin{aligned}&{\bar{k}}_d (\varepsilon )= \frac{(N-1) \alpha e^{\beta (\mu - \varepsilon ) } e^{\alpha \beta \varepsilon _0/2 } }{2(1 +\alpha )\sinh (\alpha \beta \varepsilon _0/2)} \nonumber \\&\qquad \times \Big ({}_{2}F_{1} \big (1, 1+\alpha ; 2+\alpha ;-e^{ \beta (\mu -\varepsilon )} \big )\nonumber \\&\qquad - e^{-(1+\alpha )\beta \varepsilon _0 }{}_{2}F_{1} \big (1, 1+\alpha ; 2 +\alpha ;- e^{ \beta ( \mu - \varepsilon - \varepsilon _0 )} \big ) \Big ) , \end{aligned}$$
    (96)
    $$\begin{aligned}&L_d = \frac{N(N-1)\alpha ^2 e^{\beta ( \mu - \varepsilon _0 )}}{8(1+\alpha )^2\sinh ^2(\alpha \beta \varepsilon _0/2)} \Big (e^{(1+\alpha ) \beta \varepsilon _0} \nonumber \\&\qquad \times {}_{3}F_{2} \big (1, 1+\alpha ,1+\alpha ; 2+\alpha , 2+\alpha ;- e^{ \beta \mu } \big ) \nonumber \\&\qquad + e^{-(1+\alpha ) \beta \varepsilon _0}{}_{3}F_{2} \big (1, 1+\alpha ,1+\alpha ;\nonumber \\&\qquad 2+\alpha , 2+\alpha ;- e^{\beta (\mu - 2\varepsilon _0 )}\big ) \nonumber \\&\qquad - 2 {}_{3}F_{2} \big (1,1+ \alpha ,1+ \alpha ; 2+\alpha , 2+\alpha ;- e^{\beta (\mu - \varepsilon _0 )} \big ) \Big ). \end{aligned}$$
    (97)
    $$\begin{aligned}&\Omega _d= \frac{1}{\alpha \beta }L_d - \frac{N(N-1) }{8 \beta \sinh ^2(\alpha \beta \varepsilon _0/2)} \nonumber \\ {}&\qquad \times \Big ( e^{-\alpha \beta \varepsilon _0} \ln \big (1 + e^{\beta (\mu - 2\varepsilon _0)} \big )\nonumber \\&\qquad -2\ln \big (1 + e^{\beta (\mu - \varepsilon _0)} \big ) \nonumber \\&\qquad +e^{\alpha \beta \varepsilon _0} \ln \big (1 + e^{\beta \mu } \big ) + e^{-\alpha \beta \varepsilon _0} \Phi (-e^{\beta (2\varepsilon _0-\mu )},1,-\alpha \big ) \nonumber \\&\qquad -2 \Phi \big (-e^{\beta (\varepsilon _0-\mu )},1,-\alpha \big ) \nonumber \\&\qquad + e^{\alpha \beta \varepsilon _0}\Phi \big (-e^{-\beta \mu },1,-\alpha \big ) \Big ) , \end{aligned}$$
    (98)

where \({}_{p}F_{q}(a_1, \dots , a_p; b_1, \dots , b_q; z)\) is the generalized hypergeometric function, and \(\Phi (z,a,b)\) denotes the Lerch transcendent [40, 41].

B Deduction of the constant \(\nu \)

This section examines the chemical potential \(\mu = T_c\ln (\nu /\kappa ) \) to determine the constant \(\nu \). To proceed, we use the relation \(L = \langle k \rangle N/2\) for the Type A graph (see Eq. (27))

$$\begin{aligned}&L= \frac{N(N-1) }{8\sinh ^2(\alpha \beta \mu /2)} \Big ( e^{\alpha \beta \mu } {}_{3}F_{2} \big (1, \alpha , \alpha ; 1+\alpha , 1+\alpha ;- e^{ \beta \mu } \big ) \nonumber \\&\qquad - 2 {}_{3}F_{2} \big (1, \alpha , \alpha ; 1+\alpha , 1+\alpha ;- 1\big ) \nonumber \\&\qquad + e^{ -\alpha \beta \mu } {}_{3}F_{2} \big (1, \alpha , \alpha ; 1+\alpha , 1+\alpha ;- e^{ -\beta \mu } \big )\Big ). \end{aligned}$$
(99)

Hereafter, we omit the subindices g/d in all calculations. After substitution of \(\langle k \rangle =(N-1)\nu e^{- \beta _c\mu }\), we obtain

$$\begin{aligned}&\nu = \frac{e^{ \beta _c\mu }}{4\sinh ^2(\alpha \beta \mu /2)} \Big ( e^{\alpha \beta \mu } {}_{3}F_{2} \big (1, \alpha , \alpha ; 1+\alpha , 1+\alpha ;- e^{ \beta \mu } \big ) \nonumber \\&\qquad - 2 {}_{3}F_{2} \big (1, \alpha , \alpha ; 1+\alpha , 1+\alpha ;- 1\big ) \nonumber \\&\qquad + e^{ -\alpha \beta \mu } {}_{3}F_{2} \big (1, \alpha , \alpha ; 1+\alpha , 1+\alpha ;- e^{ -\beta \mu } \big )\Big ). \end{aligned}$$
(100)

We make use of the asymptotic properties of the generalized hypergeometric functions [40, 41, 43] to get

$$\begin{aligned} \nu = \bigg (\frac{\gamma -1}{\gamma -2}\bigg )^2 e^{(\beta _c - \beta )\mu }+ {{\mathcal {O}}} (e^{-(\gamma -2 )\beta _c \mu } ). \end{aligned}$$
(101)

As seen, the asymptotic series converges when \(\gamma > 2\). Still supposing \(\gamma > 2\) and, in addition, assuming that \( \mu (T) \rightarrow \infty \) when \(T \rightarrow T_c+\), we obtain

$$\begin{aligned} \nu = \bigg (\frac{\gamma -1}{\gamma -2}\bigg )^2. \end{aligned}$$
(102)

For high temperatures, \(T \gg T_c\), similar consideration yields

$$\begin{aligned} \nu e^{-\beta _c \mu } = - \alpha ^2 \beta '(\alpha ) + {{\mathcal {O}}} (1 -e^{-\beta \mu } ). \end{aligned}$$
(103)

Substituting \(\alpha = \beta _c (\gamma -1)/\beta \) and taking the limit of \(T \rightarrow \infty \), we get

$$\begin{aligned} \mu \rightarrow \mu _0 = \ln \bigg (\frac{2(\gamma -1)^2}{(\gamma -2)^2} \bigg )\quad \textrm{and } \quad \kappa \rightarrow \frac{1}{2}. \end{aligned}$$
(104)

C Generating function

Following Ref. [28], we define a generating function as

$$\begin{aligned} G_0(z) = \sum _k z^k P(k) , \end{aligned}$$
(105)

where P(k) is the degree distribution (the probability that any given vertex has degree k). Further, all calculations will be confined to the region \(0\le z\le 1\).

Having the generating function, one can easily calculate the degree distribution and its moments:

(106)
(107)

In particular, this yields

$$\begin{aligned} \langle k \rangle =G'_0(1), \,\, \langle k^2 \rangle = G''_0(1) + G'_0(1). \end{aligned}$$
(108)

Further, it is convenient to introduce the abbreviation for derivatives of the generating function:

$$\begin{aligned} z_n =\frac{\textrm{d}^n}{\textrm{d}z^n}G_0(z)\Big {|}_{z=1}. \end{aligned}$$
(109)

Then, using Eq. (107), we obtain \( \langle k \rangle = z_1\), \( \langle k^2 \rangle = z_2 + z_1\), etc.

We are now ready to analyze the topological properties of the network. First, we are interested in the degree distribution, P(k) . To proceed, we employ the generating functions approach presented in Appendix C. To compute \(G_0(z)\), we use the generating function formalism for networks with hidden variables developed in Ref. [47]. Following Ref. [47], one can write the degree distribution as

$$\begin{aligned} P(k) = \int g(k \mid \varepsilon )\rho (\varepsilon ) \textrm{d}\varepsilon , \end{aligned}$$
(110)

where \(g(k \mid \varepsilon )\) denotes the propagator, with the normalization condition \(\sum _k g(k \mid \varepsilon ) =1\). Substituting P(k) in Eq. (105), we obtain

$$\begin{aligned} G_0(z) = \int \textrm{d}\varepsilon \rho (\varepsilon )\sum _k z^k g(k \mid \varepsilon ). \end{aligned}$$
(111)

As shown in Ref. [47],

$$\begin{aligned} \ln \sum _k z^k g(k \mid \varepsilon )= N\int \textrm{d}\varepsilon ^{\prime }\rho (\varepsilon ^{\prime }) \ln \big (1-(1-z) p(\varepsilon , \varepsilon ^{\prime })\big ). \end{aligned}$$
(112)

Using this result in Eq. (111), we obtain

(113)

Employing (113) and the results of Ref. [47], one can write the generating function as

(114)

where \( {\bar{k}} (\varepsilon ) = N \int p(\varepsilon , \varepsilon ' ) \rho (\varepsilon ' ) \textrm{d} \varepsilon ' \) is the expected degree of the node with the hidden variable \(\varepsilon \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, A., Villafuerte, P.H.M. Critical phenomena in complex networks: from scale-free to random networks. Eur. Phys. J. B 96, 143 (2023). https://doi.org/10.1140/epjb/s10051-023-00612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00612-0

Navigation