Skip to main content
Log in

Introduction to Network Modeling Using Exponential Random Graph Models (ERGM): Theory and an Application Using R-Project

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Exponential family random graph models (ERGM) are increasingly used in the study of social networks. These models are build to explain the global structure of a network while allowing inference on tie prediction on a micro level. The number of papers within economics is however limited. Possible applications for economics are however abundant. The aim of this document is to provide an explanation of the basic mechanics behind the models and provide a sample code (using R and the packages statnet and ERGM) to operationalize and interpret results and analyse goodness of fit. After reading this paper the reader should be able to start their own analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Scopus)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The values 0 and 1 refer to values found in an adjacency matrix, 1 indicating the presence of a link, 0 the absence.

  2. This type of model is also referred to as the \(P^*\) family of models (Anderson et al. 1999; Lusher et al. 2012).

  3. Nearest-neighbor systems have been studied by Besag (1972).

  4. In addition, the degeneracy of the model can result in problems with the estimation procedures.

  5. In the algorithm the initial values are chosen to be the MPLE.

  6. \(e^{0.7575}\) since this is the odds and not the log-odds.

References

  • Anderson, C. J., Wasserman, S., & Crouch, B. (1999). A p* primer: Logit models for social networks. Social Networks, 21(1), 37–66.

    Article  Google Scholar 

  • Besag, J. E. (1972). Nearest-neighbour systems and the auto-logistic model for binary data. Journal of the Royal Statistical Society Series B (Methodological), 34, 75–83.

    Article  Google Scholar 

  • Besag, J. E. (1975). Statistical analysis of non-lattice data. The Statistician, 24, 179–195.

    Article  Google Scholar 

  • Bouranis, L., Friel, N., & Maire, F. ( 2017). Bayesian model selection for exponential random graph models via adjusted pseudolikelihoods. arXiv preprint arXiv:1706.06344.

  • Broekel, T., & Hartog, M. (2013). Explaining the structure of inter-organizational networks using exponential random graph models. Industry and Innovation, 20(3), 277–295.

    Article  Google Scholar 

  • Butts, C. T. (2008). Network: A package for managing relational data in R. Journal of Statistical Software, 24(2), 1–36.

    Article  Google Scholar 

  • Caimo, A., & Lomi, A. (2015). Knowledge sharing in organizations: A Bayesian analysis of the role of reciprocity and formal structure. Journal of Management, 41(2), 665–691.

    Article  Google Scholar 

  • Cantner, U., & Meder, A. (2007). Technological proximity and the choice of cooperation partner. Journal of Economic Interaction and Coordination, 2(1), 45–65.

    Article  Google Scholar 

  • Carrington, P. J., Scott, J., & Wasserman, S. (2005). Models and methods in social network analysis (Vol. 28). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cranmer, S., Desmarais, B., & Menninga, E. (2012). Complex dependencies in the alliance network. Conflict Management and Peace Science, 29(3), 279–313.

    Article  Google Scholar 

  • Efron, B. (1975). Defining the curvature of a statistical problem (with applications to second order efficiency). The Annals of Statistics, 3, 1189–1242.

    Article  Google Scholar 

  • Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association, 81(395), 832–842.

    Article  Google Scholar 

  • Geyer, C. J., & Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data. Journal of the Royal Statistical Society Series B (Methodological), 64, 657–699.

    Article  Google Scholar 

  • Hammersley, J. M., & Clifford, P. (1971). Markov fields on finite graphs and lattices.

  • Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., Krivitsky, P. N., Bender-deMoll, S., et al. (2008). Statnet: Software tools for statistical analysis of network data. Journal of Statistical Software, 24(1), 1–11.

    Article  Google Scholar 

  • Handcock, M. S., Robins, G., Snijders, T. A., Moody, J., & Besag, J. (2003). Assessing degeneracy in statistical models of social networks. Citeseer: Technical report.

    Google Scholar 

  • Harris, J. K. (2013). An introduction to exponential random graph modeling (Vol. 173). Beverly Hills: Sage Publications.

    Google Scholar 

  • Hummel, R. M., Hunter, D. R., & Handcock, M. S. (2012). Improving simulation-based algorithms for fitting ergms. Journal of Computational and Graphical Statistics, 21(4), 920–939.

    Article  Google Scholar 

  • Hunter, D. R. (2007). Curved exponential family models for social networks. Social Networks, 29(2), 216–230.

    Article  Google Scholar 

  • Hunter, D. R., & Handcock, M. S. (2006). Inference in curved exponential family models for networks. Journal of Computational and Graphical Statistics, 15(3), 565–583.

    Article  Google Scholar 

  • Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., & Morris, M. (2008). Ergm: A package to fit, simulate and diagnose exponential-family models for networks. Journal of Statistical Software, 24(3), 1–29.

    Article  Google Scholar 

  • Lomi, A., & Fonti, F. (2012). Networks in markets and the propensity of companies to collaborate: An empirical test of three mechanisms. Economics Letters, 114(2), 216–220.

    Article  Google Scholar 

  • Lomi, A., & Pallotti, F. (2012). Relational collaboration among spatial multipoint competitors. Social Networks, 34(1), 101–111.

    Article  Google Scholar 

  • Lusher, D., Koskinen, J., & Robins, G. (2012). Exponential random graph models for social networks: Theory, methods, and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Pattison, P., & Robins, G. (2002). Neighborhood-based models for social networks. Sociological Methodology, 32(1), 301–337.

    Article  Google Scholar 

  • Pattison, P., & Wasserman, S. (1999). Logit models and logistic regressions for social networks: II. Multivariate relations. British Journal of Mathematical and Statistical Psychology, 52(2), 169–194.

    Article  Google Scholar 

  • Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, 22, 400–407.

    Article  Google Scholar 

  • Robins, G., Pattison, P., & Elliott, P. (2001). Network models for social influence processes. Psychometrika, 66(2), 161–189.

    Article  Google Scholar 

  • Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential random graph (p*) models for social networks. Social Networks, 29(2), 173–191.

    Article  Google Scholar 

  • Schmid, C. S., & Desmarais, B. A. (2017). Exponential random graph models with big networks: Maximum pseudolikelihood estimation and the parametric bootstrap. arXiv preprint arXiv:1708.02598.

  • Snijders, T. A. (2001). The statistical evaluation of social network dynamics. Sociological Methodology, 31(1), 361–395.

    Article  Google Scholar 

  • Snijders, T. A. (2002). Markov chain Monte Carlo estimation of exponential random graph models. Journal of Social Structure, 3(2), 1–40.

    Google Scholar 

  • Snijders, T. A., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). New specifications for exponential random graph models. Sociological Methodology, 36(1), 99–153.

    Article  Google Scholar 

  • Strauss, D., & Ikeda, M. (1990). Pseudolikelihood estimation for social networks. Journal of the American Statistical Association, 85(409), 204–212.

    Article  Google Scholar 

  • Ter Wal, A. L. (2013). The dynamics of the inventor network in German biotechnology: Geographic proximity versus triadic closure. Journal of Economic Geography, 14(3), 589–620.

    Google Scholar 

  • van der Pol, J. (2018). Explaining the structure of collaboration networks: From firm-level strategies to global network structure. Les cahiers du GREThA.

  • van der Pol, J., & Rameshkoumar, J.-P. (2018). The co-evolution of knowledge and collaboration networks: The role of the technology life-cycle. Scientometrics, 114(1), 307–323.

    Article  Google Scholar 

  • Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks: I. An introduction to markov graphs and p. Psychometrika, 61(3), 401–425.

    Article  Google Scholar 

  • White, H. C. (1992). Identity and control: A structural theory of social action. Princeton: Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes van der Pol.

Additional information

Financial support from IdEx Bordeaux and ITEMM-Lab as well as valuable comments and suggestions from Murat Yildizoglu and several anonymous reviewers are gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Pol, J. Introduction to Network Modeling Using Exponential Random Graph Models (ERGM): Theory and an Application Using R-Project. Comput Econ 54, 845–875 (2019). https://doi.org/10.1007/s10614-018-9853-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-018-9853-2

Keywords

Navigation