Skip to main content
Log in

Electron eigenvalues in quantum well of AlAs/InxGa1−xAs/AlAs heterostructures with InAs nanoinserts

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The paper presents the results of studying the nature of the energy levels of an electron in a quantum well of heterostructures AlAs/InxGa1−xAs/AlAs containing a thin InAs nanolayer. The dependences of these energy levels on the thickness En(b) of the InAs layer are analysed by numerical and analytical methods. An analytical formula for the dependence En(b) is obtained in the model of an infinitely deep well. The dependence of the energy levels on the thickness b of the InAs nanolayer found in the model of parabolic bands turned out to be strong and complex. In the model of nonparabolic bands, due to the growth of the electron mass with respect to energy, the number of energy levels in the well increased, and the En(b) dependences were noticeably suppressed. The nature and causes of these regularities are analysed.

Graphical abstract

Conduction band profile of AlAs/Inx Ga1−x As/InAs/InxGa1−xAs/AlAs (x = 0.53) heterostructures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request].

References

  1. T.P.E. Broekaert, W. Lee, C.G. Fonstad, Pseudomorphic In0.53Ga0.47As/AlAs/InAs resonant tunneling diodes with peak-to-valley current ratios of 30 at room temperature. Appl. Phys. Lett. 53(16), 1545–1547 (1988). https://doi.org/10.1063/1.99951(10.1063/1.99951)

    Article  ADS  Google Scholar 

  2. V.D. Dymnikov, O.V. Konstantinov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 29, 133, (1995) (Semiconductors 29, 70 (1995). https://journals.ioffe.ru/articles/viewPDF/18062

  3. A. Tiutiunnyk, I. Pérez-Quintana, D. Laroze, C.A. Duque, M.E. Mora-Ramos, Influence of conduction-band non-parabolicity on terahertz intersubband Raman gain in GaAs/InGaAs step asymmetric quantum wells. Appl. Phys. A 126(23), 1–8 (2020). https://doi.org/10.1007/s00339-019-3214-4

    Article  Google Scholar 

  4. T. Akazaki, T. Enoki, K. Arai, Y. Umeda, Y. Ishii, High-frequency performance for sub0.1 µm gate InAs-inserted-channel InAIAs/lnGaAs HEMT. Electron. Lett. 28(13), 1230–1231 (1992). https://doi.org/10.1049/el:19920776

    Article  ADS  Google Scholar 

  5. T. Akazaki, H. Takayanagi, J. Nitta, T. Enoki, A Josephson field effect transistor using an InAs inserted channel In0.52Al0.48As/In0.53Ga0.47As inverted modulation doped structure. Appl. Phys. Lett. 68(3), 418–420 (1996). https://doi.org/10.1063/1.116704

    Article  ADS  Google Scholar 

  6. T. Akazaki, T. Enoki, K. Arai, Y. Ishii, Improving the characteristics of an InAlAs/InGaAs inverted HEMT by inserting an InAs layer into the InGaAs channel. Solid Slate Electron. 38(5), 997–1000 (1995). https://doi.org/10.1016/0038-1101(95)98667-R

    Article  ADS  Google Scholar 

  7. J. Ajayan, D. Nirmal, P. Prajoon, J.C. Pravin, Analysis of nanometer-scale InGaAs/InAs/InGaAs composite channel MOSFETs using high-K dielectrics for high speed applications. Int. J. Electron. Commun. (AEÜ) 79, 151–157 (2017). https://doi.org/10.1016/j.aeue.2017.06.004

    Article  Google Scholar 

  8. D.S. Ponomarev, I.S. Vasil’evskii, G.B. Galiev, E.A. Klimov, R.A. Khabibullin, V.A. Kulbachinskii, N.A. Uzeeva, Electron mobility and effective mass in composite InGaAs quantum wells with InAs and GaAs nanoinserts, ISSN 1063, 26. Semiconductors 46(4), 484–490 (2012). https://doi.org/10.1134/S1063782612040173

    Article  ADS  Google Scholar 

  9. I.S. Vasil’evskii, G.B. Galieva, E.A. Klimov, K. Pozela, J. Pozela, V. Juciene, A. Suziedelis, N. Zurauskiene, S. Keršulis, V. Stankevic, Electron mobility and drift velocity in selectively doped InAlAs/InGaAs/InAlAs heterostructures, ISSN 1063, 7826. Semiconductors 45(9), 1169–1172 (2011). https://doi.org/10.1134/S1063782611090259

    Article  ADS  Google Scholar 

  10. M.V. Krishna, M.M. Rahool, K.D. Kumar, A.D. Raj, R.S. Kumar, Performance analysis of InP based composite channel e-mode HEMT device for high frequency applications. J Phys Conf Ser 1917, 012014 (2021). https://doi.org/10.1088/1742-6596/1917/1/012014

    Article  Google Scholar 

  11. M. D. Lange, X. B. Mei, T. P. Chin, W. H. Yoshida, W. R. Deal, P.-H. Liu, R. Lai, InAs/InGaAs composite-channel HEMT on InP: tailoring InGaAs thickness for performance, in 2008 20th International Conference on Indium Phosphide and Related Materials. 2008. https://doi.org/10.1109/ICIPRM.2008.4702935

  12. H. Matsuzaki, T. Maruyama, T. Koasugi, H. Takahashi, M. Tokumitsu, Lateral scale down of InGaAs/InAs composite-channel HEMTs with tungsten-based tiered ohmic structure for 2-S/mm gm and 500-GHz fT. IEEE Trans. Eelectron Devices 54(3), 378–384 (2007). https://doi.org/10.1109/TED.2006.890262

    Article  ADS  Google Scholar 

  13. G.B. Galiev, I.S. Vasil’evskii, E.A. Klimov, A.N. Klochkov, D.V. Lavruhin, S.S. Pushkarev, P.P. Maltsev, Specific features of the photoluminescence of HEMT nanoheterostructures containing a composite InAlAs/InGaAs/InAs/InGaAs/InAlAs Quantum Wel, ISSN 1063–7826. Semiconductors 49(2), 234–241 (2015). https://doi.org/10.1134/S1063782615020086

    Article  ADS  Google Scholar 

  14. F. Xue, H. Zhao, Y.-T. Chen, Y. Wang, F. Zhou, J.C. Lee, InAs inserted InGaAs buried channel metal-oxide-semiconductor field effect-transistors with atomic-layer-deposited gate dielectric. Appl. Phys. Lett. 98, 082106 (2011). https://doi.org/10.1063/1.3559609

    Article  ADS  Google Scholar 

  15. M.Y. Chernov, V.A. Solovev, O.S. Komkov, D.D. Firsov, B.Y. Meltser, M.A. Yagovkina, M.V. Baidakova, P.S. Kop’ev, S.V. Ivanov, Enhanced room-temperature 3.5 µm photoluminescence in stress-balanced metamorphic In(Sb, As)/In(Ga, Al)As/GaAs quantum wells. Appl. Phys. Express 10, 121201 (2017). https://doi.org/10.7567/APEX.10.121201

    Article  ADS  Google Scholar 

  16. S.V. Ivanov, MYu. Chernov, V.A. Solov’ev, P.N. Brunkov, D.D. Firsov, O.S. Komkov, Metamorphic InAs(Sb)/InGaAs/InAlAs nanoheterostructures grown on GaAs for efficient mid-IR emitters. Prog. Cryst. Growth Charact. Mater. 65, 20–35 (2019). https://doi.org/10.1016/j.pcrysgrow.2018.12.001

    Article  Google Scholar 

  17. H. Takayanagi, T. Akazaki, Submicron gate-fitted superconducting junction using a two-dimensional electron gas. Jpn. J. Appl. Phys. 34, 6977–6986 (1995)

    Article  ADS  Google Scholar 

  18. A.L. Vasil’ev, I.S. Vasil’evskii, G.B. Galiev, R.M. Imamov, E.A. Klimov, M.V. Kovalchuk, D.S. Ponomarev, V.V. Roddatis, I.A. Subbotin, Structural and electrical properties of quantum wells with nanoscale InAs inserts in InyAl1-yAs/InxGa1-xAs heterostructures on InP substrates, ISSN 1063–7745. Crystallogr Rep 56(2), 298–309 (2011). https://doi.org/10.1134/S1063774511020180

    Article  ADS  Google Scholar 

  19. I.A. Vovk, V.V. Lobanov, A.P. Litvin, M.Y. Leonov, A.V. Fedorov, I.D. Rukhlenko, Band structure and intersubband transitions of three-layer semiconductor nanoplatelets. Nanomaterials 10, 933 (2020). https://doi.org/10.3390/nano10050933

    Article  Google Scholar 

  20. G. Bastard, J.A. Brum, R. Ferreira, Electronic states in semiconductor heterostructures. Solid State Phys. 44, 251–252 (1991). https://doi.org/10.1016/S0081-1947(08)60092-2

    Google Scholar 

  21. D.F. Nelson, R.C. Miller, D.A. Kleinman, Band nonparabolicity effects in semiconductor quantum wells. Phys. Rev. B 14, 7770–7773 (1987). https://doi.org/10.1103/PhysRevB.35.7770

    Article  ADS  Google Scholar 

  22. V.P. Dragunov, I.G. Neizvestny, V.A. Gridchin, Osnovi nanoelektroniki: Uchebnoe posobie. M.: Universitetskaya kniga; Logos; Fizmatkniga (2006) 496 c. (In Russia)

  23. V.V. Filippov, A.A. Zavarotniy, S.V. Mitsuk, Energeticheskiy spektr nositeley zaryada v strukturax nanoelektroniki, Lipetsk, LGPU (2012) c.46–53 (In Russia)

Download references

Acknowledgements

The work was performed on the basis of the Fundamental Research Grant Programs FZ-20200929243 “The Effect of Hot Electrons and Phonons in a Strong Electromagnetic Field on the Characteristics of Semiconductor Solar Photovoltaic Elements and Nanostructures”.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the manuscript.

Corresponding author

Correspondence to Makhmudjon Tokhirjonov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baymatov, P., Abdulazizov, B. & Tokhirjonov, M. Electron eigenvalues in quantum well of AlAs/InxGa1−xAs/AlAs heterostructures with InAs nanoinserts. Eur. Phys. J. B 96, 118 (2023). https://doi.org/10.1140/epjb/s10051-023-00586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00586-z

Navigation