Skip to main content
Log in

Spin-half Heisenberg antiferromagnet on a symmetric sawtooth chain: rotation-invariant Green’s functions and high-temperature series

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We apply the rotation-invariant Green’s function method to study the finite-temperature properties of a \(S{=}1/2\) sawtooth-chain (also called \(\Delta \)-chain) antiferromagnetic Heisenberg model at the fully frustrated point when the exchange couplings along the straight-line and zig–zag paths are equal. We also use 13 terms of high-temperature expansion series and interpolation methods to get thermodynamic quantities for this model. We check the obtained predictions for observable quantities by comparison with numerics for finite systems. Although our work refers to a one-dimensional case, the utilized methods work in higher dimensions too and are applicable for examining other frustrated quantum spin lattice systems at finite temperatures.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data are available from the authors upon reasonable request].

References

  1. L. Weber, A. Honecker, B. Normand, P. Corboz, F. Mila, S. Wessel, SciPost Phys. 12, 054 (2022). https://doi.org/10.21468/SciPostPhys.12.2.054

    Article  ADS  Google Scholar 

  2. I. Hagymási, R. Schäfer, R. Moessner, D.J. Luitz, Phys. Rev. Lett. 126, 117204 (2021). https://doi.org/10.1103/PhysRevLett.126.117204

    Article  ADS  Google Scholar 

  3. R. Schäfer, I. Hagymási, R. Moessner, D.J. Luitz, Phys. Rev. B 102, 054408 (2020). https://doi.org/10.1103/PhysRevB.102.054408

    Article  ADS  Google Scholar 

  4. H.-J. Schmidt, A. Lohmann, J. Richter, Phys. Rev. B 84, 104443 (2011). https://doi.org/10.1103/PhysRevB.84.104443

    Article  ADS  Google Scholar 

  5. A. Lohmann, H.-J. Schmidt, J. Richter, Phys. Rev. B 89, 014415 (2014). https://doi.org/10.1103/PhysRevB.89.014415

    Article  ADS  Google Scholar 

  6. B. Bernu, G. Misguich, Phys. Rev. B 63, 134409 (2001). https://doi.org/10.1103/PhysRevB.63.134409

    Article  ADS  Google Scholar 

  7. G. Misguich, B. Bernu, Phys. Rev. B 71, 014417 (2005). https://doi.org/10.1103/PhysRevB.71.014417

    Article  ADS  Google Scholar 

  8. B. Bernu, C. Lhuillier, Phys. Rev. Lett. 114, 057201 (2015). https://doi.org/10.1103/PhysRevLett.114.057201

    Article  ADS  Google Scholar 

  9. B. Bernu, L. Pierre, K. Essafi, L. Messio, Phys. Rev. B 101, 140403(R) (2020). https://doi.org/10.1103/PhysRevB.101.140403

    Article  ADS  Google Scholar 

  10. O. Derzhko, T. Hutak, T. Krokhmalskii, J. Schnack, J. Richter, Phys. Rev. B 101, 174426 (2020). https://doi.org/10.1103/PhysRevB.101.174426

    Article  ADS  Google Scholar 

  11. M.G. Gonzalez, B. Bernu, L. Pierre, L. Messio, SciPost Phys. 12, 112 (2022). https://doi.org/10.21468/SciPostPhys.12.3.112

    Article  ADS  Google Scholar 

  12. H.-J. Schmidt, A. Hauser, A. Lohmann, J. Richter, Phys. Rev. E 95, 042110 (2017). https://doi.org/10.1103/PhysRevE.95.042110

    Article  ADS  Google Scholar 

  13. S.V. Tyablikov, Methods in the Quantum Theory of Magnetism (Plenum Press (Plenum Publishing Corporation), New York, 1967)

    Book  Google Scholar 

  14. D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974)

    Google Scholar 

  15. W. Gasser, E. Heiner, K. Elk, Greensche Funktionen in Festkörper- und Vielteilchenphysik (Wiley-VCH, Berlin, 2001)

    Book  MATH  Google Scholar 

  16. Yu.G. Rudoy, Theor. Math. Phys. 168, 1318 (2011). https://doi.org/10.1007/s11232-011-0108-9

    Article  Google Scholar 

  17. J. Kondo, K. Yamaji, Prog. Theor. Phys. 47, 807 (1972). https://doi.org/10.1143/PTP.47.807

    Article  ADS  Google Scholar 

  18. H. Shimahara, S. Takada, J. Phys. Soc. Jpn. 60, 2394 (1991). https://doi.org/10.1143/JPSJ.60.2394

    Article  ADS  Google Scholar 

  19. A.F. Barabanov, O.A. Starykh, J. Phys. Soc. Jpn. 61, 704 (1992). https://doi.org/10.1143/JPSJ.61.704

    Article  ADS  Google Scholar 

  20. S. Winterfeldt, D. Ihle, Phys. Rev. B 56, 5535 (1997). https://doi.org/10.1103/PhysRevB.56.5535

    Article  ADS  Google Scholar 

  21. W. Yu, S. Feng, Eur. Phys. J. B 13, 265 (2000). https://doi.org/10.1007/s100510050031

    Article  ADS  Google Scholar 

  22. L. Siurakshina, D. Ihle, R. Hayn, Phys. Rev. B 64, 104406 (2001). https://doi.org/10.1103/PhysRevB.64.104406

    Article  ADS  Google Scholar 

  23. B.H. Bernhard, B. Canals, C. Lacroix, Phys. Rev. B 66, 104424 (2002). https://doi.org/10.1103/PhysRevB.66.104424

    Article  ADS  Google Scholar 

  24. I. Junger, D. Ihle, J. Richter, A. Klümper, Phys. Rev. B 70, 104419 (2004). https://doi.org/10.1103/PhysRevB.70.104419

    Article  ADS  Google Scholar 

  25. P. Fröbrich, P.J. Kuntz, Phys. Rep. 432, 223 (2006). https://doi.org/10.1016/j.physrep.2006.07.002

    Article  MathSciNet  ADS  Google Scholar 

  26. D. Schmalfuß, R. Darradi, J. Richter, J. Schulenburg, D. Ihle, Phys. Rev. Lett. 97, 157201 (2006). https://doi.org/10.1103/PhysRevLett.97.157201

    Article  ADS  Google Scholar 

  27. T.N. Antsygina, M.I. Poltavskaya, I.I. Poltavsky, K.A. Chishko, Phys. Rev. B 77, 024407 (2008). https://doi.org/10.1103/PhysRevB.77.024407

    Article  ADS  Google Scholar 

  28. M. Härtel, J. Richter, D. Ihle, S.-L. Drechsler, Phys. Rev. B 78, 174412 (2008). https://doi.org/10.1103/PhysRevB.78.174412

    Article  ADS  Google Scholar 

  29. A.V. Miheyenkov, A.V. Shvartsberg, A.F. Barabanov, JETP Lett. 98, 156 (2013). https://doi.org/10.1134/S0021364013160121

    Article  ADS  Google Scholar 

  30. O. Menchyshyn, T. Krokhmalskii, O. Derzhko, Simple-cubic-lattice spin-1/2 Heisenberg model within Green-function method, preprint Inst. Cond. Matt. Phys., Nat. Acad. Sci. of Ukraine, ICMP-14-01E (L’viv, 2014)

  31. A.A. Vladimirov, D. Ihle, N.M. Plakida, Eur. Phys. J. B 88, 148 (2015). https://doi.org/10.1140/epjb/e2015-60170-x

    Article  ADS  Google Scholar 

  32. P. Müller, A. Lohmann, J. Richter, O. Menchyshyn, O. Derzhko, Phys. Rev. B 96, 174419 (2017). https://doi.org/10.1103/PhysRevB.96.174419

    Article  Google Scholar 

  33. A.V. Mikheenkov, V.E. Valiulin, A.V. Shvartsberg, A.F. Barabanov, J. Exp. Theor. Phys. 126, 404 (2018). https://doi.org/10.1134/S1063776118030147

    Article  ADS  Google Scholar 

  34. N.-N. Sun, H.-Y. Wang, J. Magn. Magn. Mater. 454, 176 (2018). https://doi.org/10.1016/j.jmmm.2018.01.076

    Article  Google Scholar 

  35. P. Müller, A. Zander, J. Richter, Phys. Rev. B 98, 024414 (2018). https://doi.org/10.1103/PhysRevB.98.024414

    Article  ADS  Google Scholar 

  36. T. Hutak, P. Müller, J. Richter, T. Krokhmalskii, O. Derzhko, Condens. Matter Phys. 21, 33705 (2018). https://doi.org/10.5488/CMP.21.33705

    Article  ADS  Google Scholar 

  37. P. Müller, A. Lohmann, J. Richter, O. Derzhko, Phys. Rev. B 100, 024424 (2019). https://doi.org/10.1103/PhysRevB.100.024424

    Article  ADS  Google Scholar 

  38. R. Wieser, J. Phys.: Condens. Matter 31, 325801 (2019). https://doi.org/10.1088/1361-648X/ab1f3b

    Article  Google Scholar 

  39. P.S. Savchenkov, A.F. Barabanov, J. Magn. Magn. Mater. 521, 167505 (2021). https://doi.org/10.1016/j.jmmm.2020.167505

    Article  Google Scholar 

  40. T. Hutak, T. Krokhmalskii, O. Derzhko, J. Richter, Eur. Phys. J. B 95, 93 (2022). https://doi.org/10.1140/epjb/s10051-022-00359-0

    Article  ADS  Google Scholar 

  41. J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002). https://doi.org/10.1103/PhysRevLett.88.167207

    Article  ADS  Google Scholar 

  42. T. Tonegawa, M. Kaburagi, J. Magn. Magn. Mater. 272–276, 898 (2004). https://doi.org/10.1016/j.jmmm.2003.11.367

    Article  ADS  Google Scholar 

  43. M.E. Zhitomirsky, H. Tsunetsugu, Prog. Theor. Phys. Suppl. 160, 361 (2005). https://doi.org/10.1143/PTPS.160.361

    Article  ADS  Google Scholar 

  44. J. Richter, O. Derzhko, A. Honecker, Int. J. Mod. Phys. B 22, 4418 (2008). https://doi.org/10.1142/9789812836625_0014

    Article  ADS  Google Scholar 

  45. D.V. Dmitriev, V. Ya. Krivnov, J. Phys.: Condens. Matter 28, 506002 (2016). https://doi.org/10.1088/0953-8984/28/50/506002

  46. T. Yamaguchi, S.-L. Drechsler, Y. Ohta, S. Nishimoto, Phys. Rev. B 101, 104407 (2020). https://doi.org/10.1103/PhysRevB.101.104407

    Article  ADS  Google Scholar 

  47. A. Metavitsiadis, C. Psaroudaki, W. Brenig, Phys. Rev. B 101, 235143 (2020). https://doi.org/10.1103/PhysRevB.101.235143

    Article  ADS  Google Scholar 

  48. J. Richter, J. Schulenburg, D.V. Dmitriev, V. Ya. Krivnov, J. Schnack, Condens. Matter Phys. 23, 43710 (2020). https://doi.org/10.5488/CMP.23.43710

  49. R. Rausch, M. Peschke, C. Plorin, J. Schnack, C. Karrasch, Quantum spin spiral ground state of the ferrimagnetic sawtooth chain, arXiv:2207.08273 (2022)

  50. L. Heinze, R. Beltran-Rodriguez, G. Bastien, A.U.B. Wolter, M. Reehuis, J.-U. Hoffmann, K.C. Rule, S. Süllow, Phys. B 536, 377 (2018). https://doi.org/10.1016/j.physb.2017.09.073

    Article  ADS  Google Scholar 

  51. L. Heinze, H. O. Jeschke, I. I. Mazin, A. Metavitsiadis, M. Reehuis, R. Feyerherm, J.-U. Hoffmann, M. Bartkowiak, O. Prokhnenko, A. U. B. Wolter, X. Ding, V. S. Zapf, C. Corvalán Moya, F. Weickert, M. Jaime, K. C. Rule, D. Menzel, R. Valenti, W. Brenig, S. Süllow, Phys. Rev. Lett. 126, 207201 (2021). https://doi.org/10.1103/PhysRevLett.126.207201

  52. H. Kikuchi, Y. Fujii, D. Takahashi, M. Azuma, Y. Shimakawa, T. Taniguchi, A. Matsuo, K. Kindo, J. Phys.: Conf. Ser. 320, 012045 (2011). https://doi.org/10.1088/1742-6596/320/1/012045

    Article  Google Scholar 

  53. Y. Tang, C. Peng, W. Guo, J.-F. Wang, G. Su, Z. He, J. Am. Chem. Soc. 139, 14057 (2017). https://doi.org/10.1021/jacs.7b09246

    Article  Google Scholar 

  54. A. Baniodeh, N. Magnani, Y. Lan, G. Buth, C. E. Anson, J. Richter, M. Affronte, J. Schnack, A. K. Powell, npj Quantum Mater. 3, 10 (2018). https://doi.org/10.1038/s41535-018-0082-7

  55. D.S. Inosov, Adv. Phys. 67, 149 (2018). https://doi.org/10.1080/00018732.2018.1571986

    Article  ADS  Google Scholar 

  56. V.P. Gnezdilov, Yu.G. Pashkevich, V.S. Kurnosov, O.V. Zhuravlev, D. Wulferding, P. Lemmens, D. Menzel, E.S. Kozlyakova, A. Yu. Akhrorov, E.S. Kuznetsova, P.S. Berdonosov, V.A. Dolgikh, O.S. Volkova, A.N. Vasiliev, Phys. Rev. B 99, 064413 (2019). https://doi.org/10.1103/PhysRevB.99.064413

  57. K. Nawa, M. Avdeev, P. Berdonosov, A. Sobolev, I. Presniakov, A. Aslandukova, E. Kozlyakova, A. Vasiliev, I. Shchetinin, T.J. Sato, Sci. Rep. 11, 24049 (2021). https://doi.org/10.1038/s41598-021-03058-5

    Article  ADS  Google Scholar 

  58. L.D. Sanjeewa, V.O. Garlea, K.M. Taddei, L. Yin, J. Xing, R.S. Fishman, D.S. Parker, A.S. Sefat, Inorgan. Chem. Front. 9, 4329 (2022). https://doi.org/10.1039/D2QI01072K

    Article  Google Scholar 

  59. T. Zhang, G.-B. Jo, Sci. Rep. 5, 16044 (2015). https://doi.org/10.1038/srep16044

    Article  ADS  Google Scholar 

  60. F. Monti, A. Sütö, Phys. Lett. A 156, 197 (1991). https://doi.org/10.1016/0375-9601(91)90937-4

    Article  MathSciNet  ADS  Google Scholar 

  61. K. Kubo, Phys. Rev. B 48, 10552 (1993). https://doi.org/10.1103/PhysRevB.48.10552

    Article  ADS  Google Scholar 

  62. T. Nakamura, Y. Saika, J. Phys. Soc. Jpn. 64, 695 (1995). https://doi.org/10.1143/JPSJ.64.695

    Article  ADS  Google Scholar 

  63. T. Nakamura, K. Kubo, Phys. Rev. B 53, 6393 (1996). https://doi.org/10.1103/PhysRevB.53.6393

    Article  ADS  Google Scholar 

  64. D. Sen, B.S. Shastry, R.E. Walstedt, R. Cava, Phys. Rev. B 53, 6401 (1996). https://doi.org/10.1103/PhysRevB.53.6401

    Article  ADS  Google Scholar 

  65. S. Blundell, M. Núñez-Regueiro, Eur. Phys. J. B 31, 453 (2003). https://doi.org/10.1140/epjb/e2003-00054-2

    Article  ADS  Google Scholar 

  66. J.-J. Jiang, Y.-J. Liu, F. Tang, C.-H. Yang, Y.-B. Sheng, Phys. B 463, 30 (2015). https://doi.org/10.1016/j.physb.2015.01.036

    Article  ADS  Google Scholar 

  67. S. Paul, A.K. Ghosh, Eur. Phys. J. B 92, 40 (2019). https://doi.org/10.1140/epjb/e2019-90714-9

    Article  ADS  Google Scholar 

  68. R. Siddharthan, A. Georges, Phys. Rev. B 65, 014417 (2001). https://doi.org/10.1103/PhysRevB.65.014417

    Article  ADS  Google Scholar 

  69. P. Tomczak, J. Richter, Phys. Rev. B 54, 9004 (1996). https://doi.org/10.1103/PhysRevB.54.9004

    Article  ADS  Google Scholar 

  70. J. Richter, J. Schulenburg, P. Tomczak, D. Schmalfuß, Condens. Matter Phys. 12, 507 (2009). https://doi.org/10.5488/CMP.12.3.507

    Article  ADS  Google Scholar 

  71. H. Nakano, T. Sakai, J. Phys. Soc. Jpn. 82, 083709 (2013). https://doi.org/10.7566/JPSJ.82.083709

    Article  ADS  Google Scholar 

  72. I. Rousochatzakis, R. Moessner, J. van den Brink, Phys. Rev. B 88, 195109 (2013). https://doi.org/10.1103/PhysRevB.88.195109

    Article  ADS  Google Scholar 

  73. Y. Hasegawa, H. Nakano, T. Sakai, Phys. Rev. B 98, 014404 (2018). https://doi.org/10.1103/PhysRevB.98.014404

    Article  ADS  Google Scholar 

  74. T. Lugan, L.D. Jaubert, A. Ralko, Phys. Rev. Res. 1, 033147 (2019). https://doi.org/10.1103/PhysRevResearch.1.033147

    Article  Google Scholar 

  75. P.A. McClarty, M. Haque, A. Sen, J. Richter, Phys. Rev. B 102, 224303 (2020). https://doi.org/10.1103/PhysRevB.102.224303

    Article  ADS  Google Scholar 

  76. T. Mizoguchi, Y. Kuno, Y. Hatsugai, Phys. Rev. B 104, 035161 (2021). https://doi.org/10.1103/PhysRevB.104.035161

    Article  ADS  Google Scholar 

  77. N. Astrakhantsev, F. Ferrari, N. Niggemann, T. Müller, A. Chauhan, A. Kshetrimayum, P. Ghosh, N. Regnault, R. Thomale, J. Reuther, T. Neupert, Y. Iqbal, Phys. Rev. B 104, L220408 (2021). https://doi.org/10.1103/PhysRevB.104.L220408

    Article  ADS  Google Scholar 

  78. J. Richter, O. Derzhko, J. Schnack, Phys. Rev. B 105, 144427 (2022). https://doi.org/10.1103/PhysRevB.105.144427

    Article  ADS  Google Scholar 

  79. H. Schlüter, J. Richter, J. Schnack, J. Phys. Soc. Jpn. 91, 094711 (2022). https://doi.org/10.7566/JPSJ.91.094711

    Article  ADS  Google Scholar 

  80. J. Richter, J. Schnack, Magnetism of the \(s=1/2\)\(J_1\)-\(J_2\) square-kagome lattice antiferromagnet, arXiv:2212.10838 (2022)

  81. M. Fujihala, K. Morita, R. Mole, S. Mitsuda, T. Tohyama, S.-I. Yano, D. Yu, S. Sota, T. Kuwai, A. Koda, H. Okabe, H. Lee, S. Itoh, T. Hawai, T. Masuda, H. Sagayama, A. Matsuo, K. Kindo, S. Ohira-Kawamura, K. Nakajima, Nat. Commun. 11, 3429 (2020). https://doi.org/10.1038/s41467-020-17235-z

    Article  ADS  Google Scholar 

  82. O.V. Yakubovich, L.V. Shvanskaya, G.V. Kiriukhina, A.S. Volkov, O.V. Dimitrova, A.N. Vasiliev, Inorgan. Chem. 60, 11450 (2021). https://doi.org/10.1021/acs.inorgchem.1c01459

    Article  Google Scholar 

  83. B. Liu, Z. Zeng, A. Xu, Y. Sun, O. Yakubovich, L. Shvanskaya, S. Li, A. Vasiliev, Phys. Rev. B 105, 155153 (2022). https://doi.org/10.1103/PhysRevB.105.155153

    Article  ADS  Google Scholar 

  84. M. M. Markina, P. S. Berdonosov, T. M. Vasilchikova, K. V. Zakharov, A. F. Murtazoev, V.A. Dolgikh, A. V. Moskvin, V. N. Glazkov, A. I. Smirnov, A. N. Vasiliev, Static and resonant properties of decorated square kagome lattice compound KCu\(_7\)(TeO\(_4\))(SO\(_4\))\(_5\)Cl, arXiv:2212.11623 (2022)

  85. B.S. Shastry, B. Sutherland, Phys. B 108, 1069 (1981). https://doi.org/10.1016/0378-4363(81)90838-X

    Article  Google Scholar 

  86. P. Fazekas, Lecture Notes on Electron Correlation and Magnetism, Series in Modern Condensed Matter Physics: Volume 5 (World Scientific. Singapore (1999). https://doi.org/10.1142/2945

  87. D.J.J. Farnell, R. Darradi, R. Schmidt, J. Richter, Phys. Rev. B 84, 104406 (2011). https://doi.org/10.1103/PhysRevB.84.104406

    Article  ADS  Google Scholar 

  88. Y. Haraguchi, A. Matsuo, K. Kindo, Z. Hiroi, Phys. Rev. B 104, 174439 (2021). https://doi.org/10.1103/PhysRevB.104.174439

    Article  ADS  Google Scholar 

  89. R. Makuta, C. Hotta, Phys. Rev. B 104, 224415 (2021). https://doi.org/10.1103/PhysRevB.104.224415

    Article  ADS  Google Scholar 

  90. P. Ghosh, T. Müller, R. Thomale, Phys. Rev. B 105, L180412 (2022). https://doi.org/10.1103/PhysRevB.105.L180412

    Article  ADS  Google Scholar 

  91. J. Jaklič, P. Prelovšek, Phys. Rev. B 49, 5065(R) (1994). https://doi.org/10.1103/PhysRevB.49.5065

    Article  ADS  Google Scholar 

  92. J. Schnack, J. Schulenburg, J. Richter, Phys. Rev. B 98, 094423 (2018). https://doi.org/10.1103/PhysRevB.98.094423

    Article  ADS  Google Scholar 

  93. P. Prelovšek, J. Kokalj, Phys. Rev. B 98, 035107 (2018). https://doi.org/10.1103/PhysRevB.98.035107

    Article  ADS  Google Scholar 

  94. J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Res. 2, 013186 (2020). https://doi.org/10.1103/PhysRevResearch.2.013186

  95. J. Schulenburg, spinpack 2.59, Magdeburg University (2020)

  96. J. Richter, J. Schulenburg, Eur. Phys. J. B 73, 117 (2010). https://doi.org/10.1140/epjb/e2009-00400-4

    Article  ADS  Google Scholar 

  97. G. A. Baker, Jr., P. Graves-Morris, Padé Approximants (Cambridge University Press, New York, 1996); pp. 38–66. https://doi.org/10.1017/CBO9780511530074

Download references

Acknowledgements

T. H. was supported by the fellowship of the President of Ukraine for young scholars. O. D. is grateful to Jozef Strečka for kind hospitality at the 1st Workshop on Perspective Electron Spin Systems for Future Quantum Technologies (Košice, June 28–29, 2022) and acknowledges kind hospitality of the ICTP, Trieste at the activity Strongly Correlated Matter: from Quantum Criticality to Flat Bands (August 22–September 2, 2022).

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Taras Hutak.

Appendices

Appendix A: Brief illustration of the finite-temperature Lanczos method (FTLM)

In this appendix, we provide the basics of the FTLM for convenience, see Refs. [91,92,93,94]. Within the FTLM scheme, the sum over an orthonormal basis in the partition function Z is replaced by a much smaller sum over R random vectors (in the present study, we take \(R=50\) for \(N=24,28,32\) and \(R=20\) for \(N=36\)), that is

$$\begin{aligned} Z\approx \sum _{\gamma =1}^{\Gamma } \frac{\dim (\mathcal{{H}}(\gamma ))}{R} \sum _{\nu =1}^{R}\sum _{n=1}^{N_\textrm{L}} \textrm{e}^{-\frac{\epsilon _n^{(\nu )}}{T}} \left| \langle n(\nu )\vert \nu \rangle \right| ^2, \end{aligned}$$
(A.1)

where \(\vert \nu \rangle \) labels random vectors for each symmetry-related orthogonal subspace \(\mathcal{{H}}(\gamma )\) of the Hilbert space with \(\gamma \) labeling the respective symmetry. The exponential of the Hamiltonian H in Eq. (A.1) is approximated by its spectral representation in a Krylov space spanned by the \(N_\textrm{L}\) Lanczos vectors starting from the respective random vector \(\vert \nu \rangle \), where \(\vert n(\nu )\rangle \) is the nth eigenvector of H in this Krylov space with the energy \(\epsilon _n^{(\nu )}\). To perform the symmetry-decomposed numerical Lanczos calculations, we use J. Schulenburg’s spinpack code [95, 96].

Appendix B: HTE series for the \(S=1/2\) \(J_1-J_2\) sawtooth-chain Heisenberg model

In this appendix, we report HTE series for the specific heat (per site) and the uniform susceptibility (per site), see Eq. (4.1), for a more general \(S=1/2\) sawtooth-chain Heisenberg model with the exchange couplings along the straight line \(J_1\) and along the zig–zag path \(J_2\), see Fig. 1. We rewrite the coefficients \(d_i\) and \(c_i\), \(i=2,\ldots ,13\) in Eq. (4.1) as follows:

$$\begin{aligned} d_i=\sum _{j=0}^i d_{i,j}J_1^{i-j}J_2^{j}; \;\;\; c_i=\sum _{j=0}^{i-1} c_{i,j}J_1^{i-j}J_2^{j}. \end{aligned}$$
(B.1)

The coefficients \(d_{i,j}\), \(j=0,\ldots ,i\) are as follows:

$$\begin{aligned} d_{2,j}= & {} \frac{3}{32},0,\frac{3}{16}, \nonumber \\ d_{3,j}= & {} \frac{3}{64},0,\frac{{-}9}{64},\frac{3}{32}, \nonumber \\ d_{4,j}= & {} \frac{{-}15}{512},0,\frac{{-}15}{128},\frac{{-}3}{64},\frac{{-}15}{256}, \nonumber \\ d_{5,j}= & {} \frac{{-}15}{512},0,\frac{15}{512},\frac{{-}5}{128},\frac{25}{256},\frac{{-}15}{256}, \nonumber \\ d_{6,j}= & {} \frac{21}{8\,192},0,\frac{291}{4\,096},\frac{13}{2\,048},\frac{261}{8\,192},\frac{63}{1\,024},\frac{21}{4\,096}, \nonumber \\ d_{7,j}= & {} \frac{917}{81\,920},0,\frac{777}{81\,920},\frac{77}{4\,096}, \nonumber \\{} & {} \quad \frac{{-}4\,739}{81\,920},\frac{217}{8\,192},\frac{{-}2\,611}{81\,920},\frac{917}{40\,960}, \nonumber \\ d_{8,j}= & {} \frac{1\,417}{655\,360},0,\frac{{-}2\,317}{81\,920},\frac{27}{8\,192},\frac{{-}3\,545}{98\,304}, \nonumber \\{} & {} \quad \frac{{-}1\,757}{61\,440},\frac{119}{15\,360},\frac{{-}4\,793}{122\,880},\frac{1\,417}{327\,680}, \nonumber \\ d_{9,j}= & {} \frac{{-}4\,303}{1\,376\,256},0,\frac{{-}4\,053}{327\,680},\frac{{-}375}{57\,344},\frac{6\,357}{286\,720}, \nonumber \\{} & {} \quad \frac{{-}24\,579}{1\,146\,880},\frac{3\,503}{114\,688},\frac{{-}3\,873}{1\,146\,880},\frac{2\,613}{1\,146\,880},\frac{{-}4\,303}{688\,128}, \nonumber \\ d_{10,j}= & {} \frac{{-}334\,433}{220\,200\,960},0,\frac{167\,591}{22\,020\,096},\frac{{-}35\,111}{11\,010\,048}, \nonumber \\{} & {} \quad \frac{370\,365}{14\,680\,064},\frac{16\,043}{1\,835\,008},\frac{8\,905}{22\,020\,096},\frac{303\,755}{11\,010\,048}, \nonumber \\{} & {} \quad \frac{{-}196\,571}{22\,020\,096},\frac{92\,629}{5\,505\,024},\frac{{-}334\,433}{110\,100\,480}, \nonumber \\ d_{11,j}= & {} \frac{37\,543}{62\,914\,560},0,\frac{9\,098\,771}{1\,321\,205\,760},\frac{169829}{110100480}, \nonumber \\{} & {} \quad \frac{{-}2\,735\,029}{792\,723\,456},\frac{1\,681\,801}{132\,120\,576},\frac{{-}16\,820\,155}{792\,723\,456},\frac{6\,456\,659}{990\,904\,320}, \nonumber \\{} & {} \quad \frac{{-}272\,833}{49\,545\,216},\frac{{-}330\,539}{66\,060\,288},\frac{2\,603\,711}{660\,602\,880},\frac{37\,543}{31\,457\,280}, \nonumber \\ d_{12,j}= & {} \frac{3\,987\,607}{6\,341\,787\,648},0,\frac{{-}3\,926\,113}{4\,404\,019\,200},\frac{31\,687\,379}{19\,818\,086\,400}, \nonumber \\{} & {} \quad \frac{{-}333\,299\,077}{26\,424\,115\,200},\frac{{-}72\,097}{157\,286\,400},\frac{{-}119\,844\,841}{19\,818\,086\,400}, \nonumber \\{} & {} \quad \frac{{-}20\,513\,567}{1\,321\,205\,760},\frac{46\,078\,849}{5\,872\,025\,600},\frac{{-}10\,265\,929}{707\,788\,800}, \nonumber \\{} & {} \quad \frac{9\,148\,231}{3\,303\,014\,400},\frac{{-}274\,151}{51\,609\,600},\frac{3\,987\,607}{3\,170\,893\,824}, \nonumber \\ d_{13,j}= & {} \frac{{-}1\,925\,339}{83\,047\,219\,200},0,\frac{{-}681\,805\,033}{249\,141\,657\,600},\frac{{-}263\,393}{2\,422\,210\,560}, \nonumber \\{} & {} \quad \frac{{-}609\,068\,681}{290\,665\,267\,200},\frac{{-}452\,833\,147}{79\,272\,345\,600},\frac{109\,267\,717}{10\,380\,902\,400}, \nonumber \\{} & {} \quad \frac{{-}585\,023\,153}{79\,272\,345\,600},\frac{12\,470\,300\,791}{1\,743\,991\,603\,200},\frac{2\,984\,548\,619}{871\,995\,801\,600}, \nonumber \\{} & {} \quad \frac{{-}242\,563\,763}{83\,047\,219\,200},\frac{66\,616\,537}{15\,571\,353\,600},\frac{{-}61\,211\,267}{20\,761\,804\,800}, \nonumber \\{} & {} \quad \frac{{-}1\,925\,339}{41\,523\,609\,600}. \end{aligned}$$
(B.2)

The coefficients \(c_{i,j}\), \(j=0,\ldots ,i-1\) are as follows:

$$\begin{aligned} c_{2,j}= & {} \frac{{-}1}{16},\frac{{-}1}{8}, \nonumber \\ c_{3,j}= & {} 0,\frac{1}{16},0, \nonumber \\ c_{4,j}= & {} \frac{1}{192},0,\frac{1}{256},\frac{1}{96}, \nonumber \\ c_{5,j}= & {} \frac{5}{3\,072},\frac{{-}1}{192},\frac{{-}1}{3\,072},\frac{{-}23}{1\,536},\frac{5}{1\,536}, \nonumber \\ c_{6,j}= & {} \frac{{-}7}{10\,240},\frac{{-}5}{3\,072},\frac{{-}29}{12\,288},\frac{17}{6\,144},\frac{{-}49}{12\,288},\frac{{-}7}{5\,120}, \nonumber \\ c_{7,j}= & {} \frac{{-}133}{245\,760},\frac{7}{10\,240},\frac{{-}29}{245\,760},\frac{1\,141}{368\,640}, \nonumber \\{} & {} \quad \frac{59}{122\,880},\frac{9}{2\,560},\frac{{-}133}{122\,880}, \nonumber \\ c_{8,j}&{=}&\frac{1}{32\,256},\frac{133}{245\,760},\frac{485}{589\,824},\frac{{-}43}{1\,474\,560}, \nonumber \\{} & {} \quad \frac{1\,393}{983\,040},\frac{{-}161}{92\,160},\frac{5\,863}{2\,949\,120},\frac{1}{16\,128}, \nonumber \\ c_{9,j}&{=}&\frac{1\,269}{9\,175\,040},\frac{{-}1}{32\,256},\frac{2\,623}{11\,796\,480},\frac{{-}1\,847}{1\,966\,080}, \nonumber \\{} & {} \quad \frac{{-}281}{1\,835\,008},\frac{{-}2\,657}{2\,949\,120}, \frac{{-}54\,223}{82\,575\,360},\frac{{-}23\,629}{41\,287\,680},\frac{1\,269}{4\,587\,520}, \nonumber \\ c_{10,j}= & {} \frac{3\,737}{148\,635\,648},\frac{{-}1\,269}{9\,175\,040},\frac{{-}73\,531}{330\,301\,440},\frac{{-}4\,399}{20\,643\,840}, \nonumber \\{} & {} \quad \frac{{-}47\,869}{82\,575\,360},\frac{1\,457}{2\,949\,120},\frac{{-}72\,833}{99\,090\,432}, \nonumber \\{} & {} \quad \frac{107\,419}{165\,150\,720},\frac{{-}34\,337}{47\,185\,920},\frac{3\,737}{74\,317\,824}, \nonumber \\ c_{11,j}&{=}&\frac{{-}339\,691}{11\,890\,851\,840},\frac{{-}3\,737}{148\,635\,648},\frac{{-}1\,488\,731}{11\,890\,851\,840}, \nonumber \\{} & {} \quad \frac{470\,969}{1\,981\,808\,640},\frac{{-}87\,187}{3\,963\,617\,280},\frac{179\,867}{412\,876\,800},\frac{858\,749}{2\,972\,712\,960}, \nonumber \\{} & {} \quad \frac{3\,757}{70\,778\,880},\frac{152\,969}{339\,738\,624}, \frac{{-}22\,843}{2\,972\,712\,960},\frac{{-}339\,691}{5\,945\,425\,920}, \nonumber \\ c_{12,j}= & {} \frac{{-}1\,428\,209}{108\,999\,475\,200},\frac{339\,691}{11\,890\,851\,840},\frac{9\,716\,173}{237\,817\,036\,800}, \nonumber \\{} & {} \quad \frac{14\,512\,039}{118\,908\,518\,400},\frac{7\,500\,233}{33\,973\,862\,400},\frac{{-}828\,713}{8\,493\,465\,600}, \nonumber \\{} & {} \quad \frac{795\,319}{2\,264\,924\,160},\frac{{-}3\,465\,593}{11\,890\,851\,840},\frac{9\,934\,111}{39\,636\,172\,800}, \nonumber \\{} & {} \quad \frac{{-}152\,533}{1\,061\,683\,200},\frac{3\,379\,349}{15\,854\,469\,120},\frac{{-}1\,428\,209}{54\,499\,737\,600}, \nonumber \\ c_{13,j}= & {} \frac{18\,710\,029}{4\,484\,549\,836\,800},\frac{1\,428\,209}{108\,999\,475\,200}, \nonumber \\{} & {} \quad \frac{6\,694\,733}{135\,895\,449\,600},\frac{{-}670\,989\,853}{15\,695\,924\,428\,800},\frac{5\,017\,897}{99\,656\,663\,040}, \nonumber \\{} & {} \quad \frac{{-}482\,107\,547}{2\,615\,987\,404\,800},\frac{{-}390\,798\,299}{4\,484\,549\,836\,800},\frac{{-}21\,335\,483}{348\,798\,320\,640}, \nonumber \\{} & {} \quad \frac{{-}529\,232\,611}{2\,092\,789\,923\,840},\frac{71\,879\,767}{784\,796\,221\,440},\frac{{-}741\,118\,447}{3\,487\,983\,206\,400}, \nonumber \\{} & {} \quad \frac{40\,887\,437}{747\,424\,972\,800},\frac{18\,710\,029}{2\,242\,274\,918\,400}.\nonumber \\ \end{aligned}$$
(B.3)

After setting \(J_1=J_2=1\) in Eqs. (B.1)–(B.3), one arrives at Eq. (4.1) for the \(S=1/2\) symmetric sawtooth-chain Heisenberg antiferromagnet (2.1).

Appendix C: Some intermediate results of the entropy-method interpolation

Fig. 8
figure 8

Entropy method results based on the HTE series up to 13th order for (from top to bottom) c(e), T(e), and c(T). Here, we report the outcomes for nine Padé approximants [ud] in Eq. (4.3), namely, [2, 11], [3, 10], [4, 9], [5, 8], [6, 7], [7, 6], [8, 5], [9, 4], and [10, 3]

Following the steps described in Sect. 4, we obtain the (approximate) entropy given in Eq. (4.4) and then the specific heat c(e) and the temperature T(e):

$$\begin{aligned} c(e)=-\frac{{s^\prime }^2}{s^{\prime \prime }}, \;\;\; T(e)=\frac{1}{s^\prime }; \end{aligned}$$
(C.1)

here, the prime denotes the derivative with respect to e. Equation (C.1) is a parametric representation of the temperature dependence of the specific heat c(T). The resulting c(T) curves obtained by entropy method based on the HTE series up to 10th order are smooth. However, c(T) curves obtained using the HTE series of 11th, 12th, and 13th orders are inadequate; see, e.g., Fig. 8. While the c(T) profile based on [2, 11], [3, 10], [9, 4], and [10, 3] in Eq. (4.3) is smooth (these curves are among the ones reported in Fig. 7), c(T) based on [4, 9], [5, 8], [6, 7], [7, 6], and [8, 5] in Eq. (4.3) abruptly falls to zero at certain temperatures (such curves are not shown in Fig. 7). The reason for that can be traced back to the Padé approximants in Eq. (4.3): \(Q_d(e)\) may become zero at certain \(e=e_d^\star \), \(Q_d(e_d^\star )=0\), but \(P_u(e)\) remains finite at this value of \(e=e_d^\star \), \(P_u(e_d^\star )\ne 0\); see Table 1. Previously, such Padé approximants were declared as unphysical and discarded. However, as can be seen from Fig. 8, it may be sufficient to discard from further consideration only a small region around \(e=e_d^\star \), while other values of e are applicable for further manipulations to get c(T).

Table 1 Roots of polynomials \(P_u(e)\) and \(Q_d(e)\) [see Eq. (4.3)] denoted as \(e^\star _{u}\) and \(e^\star _{d}\), respectively

It might be worth noting that the entropy method yields a physical result even for \(Q_d(e^\star _d)=0\), \(e_0\le e^\star _d\le 0\), if \(P_u(e^\star _u)=0\), \(e^\star _u=e^\star _d\). We notice that in our calculations, poles \(e^\star _d\) and zeros \(e^\star _u\) may be close but not equal, see the second column in Table 1, resulting in nonapplicability of such a Padé approximant around \(e=e_d^\star \); see the two upper panels in Fig. 8. Since s(e) and G(e), Eqs. (4.3) and (4.4), are expected to be smooth, the Padé approximants [4, 9], [5, 8], [6, 7], [7, 6], and [8, 5] have “defects” (a defect is the name given to an extraneous pole and a nearby zero; see Ref. [97]). The nearby zero of numerator and denominator may be regarded as canceling approximately; this is how to put the defects in the proper perspective; see Ref. [97].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutak, T., Krokhmalskii, T., Derzhko, O. et al. Spin-half Heisenberg antiferromagnet on a symmetric sawtooth chain: rotation-invariant Green’s functions and high-temperature series. Eur. Phys. J. B 96, 50 (2023). https://doi.org/10.1140/epjb/s10051-023-00521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00521-2

Navigation