Skip to main content
Log in

Quantum Heisenberg model on a sawtooth-chain lattice: rotation-invariant Green’s function method

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We apply the rotation-invariant Green’s function method (RGM) to study the spin \(S=1/2\) Heisenberg model on a one-dimensional sawtooth lattice, which has two nonequivalent sites in the unit cell. We check the RGM predictions for observable quantities by comparison with the exact-diagonalization and finite-temperature-Lanczos calculations. We discuss the thermodynamic and dynamic properties of this model in relation to the mineral atacamite Cu\(_2\)Cl(OH)\(_3\) complementing the RGM outcomes by results of other approaches.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: .]

References

  1. S.V. Tyablikov, Methods in the quantum theory of magnetism (Plenum Press (Plenum Publishing Corporation), New York, 1967)

    Book  Google Scholar 

  2. D.N. Zubarev, Nonequilibrium statistical thermodynamics (Consultants Bureau, New York, 1974)

    Google Scholar 

  3. W. Gasser, E. Heiner, K. Elk, Greensche Funktionen in Festkörper- und Vielteilchenphysik (Wiley-VCH, Berlin, 2001)

    Book  MATH  Google Scholar 

  4. Yu.G. Rudoy, Theoretical Math. Phys. 168, 1318 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Kondo, K. Yamaji, Prog. Theor. Phys. 47, 807 (1972)

    Article  ADS  Google Scholar 

  6. H. Shimahara, S. Takada, J. Phys. Soc. Jpn. 60, 2394 (1991)

    Article  ADS  Google Scholar 

  7. A.F. Barabanov, O.A. Starykh, J. Phys. Soc. Jpn. 61, 704 (1992)

    Article  ADS  Google Scholar 

  8. S. Winterfeldt, D. Ihle, Phys. Rev. B 56, 5535 (1997)

    Article  ADS  Google Scholar 

  9. W. Yu, S. Feng, Eur. Phys. J. B 13, 265 (2000)

    Article  ADS  Google Scholar 

  10. L. Siurakshina, D. Ihle, R. Hayn, Phys. Rev. B 64, 104406 (2001)

    Article  ADS  Google Scholar 

  11. B.H. Bernhard, B. Canals, C. Lacroix, Phys. Rev. B 66, 104424 (2002)

    Article  ADS  Google Scholar 

  12. I. Junger, D. Ihle, J. Richter, A. Klümper, Phys. Rev. B 70, 104419 (2004)

    Article  ADS  Google Scholar 

  13. P. Fröbrich, P.J. Kuntz, Phys. Rep. 432, 223 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Schmalfuß, R. Darradi, J. Richter, J. Schulenburg, D. Ihle, Phys. Rev. Lett. 97, 157201 (2006)

    Article  ADS  Google Scholar 

  15. T.N. Antsygina, M.I. Poltavskaya, I.I. Poltavsky, K.A. Chishko, Phys. Rev. B 77, 024407 (2008)

    Article  ADS  Google Scholar 

  16. M. Härtel, J. Richter, D. Ihle, S.-L. Drechsler, Phys. Rev. B 78, 174412 (2008)

    Article  ADS  Google Scholar 

  17. A.V. Miheyenkov, A.V. Shvartsberg, A.F. Barabanov, JETP Lett. 98, 156 (2013)

    Article  ADS  Google Scholar 

  18. A.A. Vladimirov, D. Ihle, N.M. Plakida, Eur. Phys. J. B 88, 148 (2015)

    Article  ADS  Google Scholar 

  19. P. Müller, A. Lohmann, J. Richter, O. Menchyshyn, O. Derzhko, Phys. Rev. B 96, 174419 (2017)

    Article  Google Scholar 

  20. T. Hutak, P. Müller, J. Richter, T. Krokhmalskii, O. Derzhko, Condensed Matter Phys. 21, 33705 (2018)

    Article  Google Scholar 

  21. A.V. Mikheenkov, V.E. Valiulin, A.V. Shvartsberg, A.F. Barabanov, J. Exp. Theor. Phys. 126, 404 (2018)

    Article  ADS  Google Scholar 

  22. N.-N. Sun, H.-Y. Wang, J. Magn. Magn. Mater. 454, 176 (2018)

    Article  Google Scholar 

  23. P. Müller, A. Zander, J. Richter, Phys. Rev. B 98, 024414 (2018)

    Article  ADS  Google Scholar 

  24. P. Müller, A. Lohmann, J. Richter, O. Derzhko, Phys. Rev. B 100, 024424 (2019)

    Article  ADS  Google Scholar 

  25. R. Wieser, J. Phys.: Condens. Matter 31, 325801 (2019)

    Google Scholar 

  26. P.S. Savchenkov, A.F. Barabanov, J. Magn. Magn. Mater. 521, 167505 (2021)

    Article  Google Scholar 

  27. J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)

    Article  ADS  Google Scholar 

  28. T. Tonegawa, M. Kaburagi, J. Magn. Magn. Mater. 272–276, 898 (2004)

    Article  ADS  Google Scholar 

  29. M.E. Zhitomirsky, H. Tsunetsugu, Prog. Theor. Phys. Suppl. 160, 361 (2005)

    Article  ADS  Google Scholar 

  30. J. Richter, O. Derzhko, A. Honecker, Int. J. Mod. Phys. B 22, 4418 (2008)

    Article  ADS  Google Scholar 

  31. D.V. Dmitriev, V.Y. Krivnov, J. Phys.: Condens. Matter 28, 506002 (2016)

    Google Scholar 

  32. T. Yamaguchi, S.-L. Drechsler, Y. Ohta, S. Nishimoto, Phys. Rev. B 101, 104407 (2020)

    Article  ADS  Google Scholar 

  33. A. Metavitsiadis, C. Psaroudaki, W. Brenig, Phys. Rev. B 101, 235143 (2020)

    Article  ADS  Google Scholar 

  34. J. Richter, J. Schulenburg, D.V. Dmitriev, V.Y. Krivnov, J. Schnack, Condensed Matter Phys. 23, 43710 (2020)

    Article  Google Scholar 

  35. R. Siddharthan, A. Georges, Phys. Rev. B 65, 014417 (2001)

    Article  ADS  Google Scholar 

  36. P. Tomczak, J. Richter, Phys. Rev. B 54, 9004 (1996)

    Article  ADS  Google Scholar 

  37. J. Richter, J. Schulenburg, P. Tomczak, D. Schmalfuß, Condensed Matter Phys. 12, 507 (2009)

    Article  Google Scholar 

  38. H. Nakano, T. Sakai, J. Phys. Soc. Jpn. 82, 083709 (2013)

    Article  ADS  Google Scholar 

  39. I. Rousochatzakis, R. Moessner, J. van den Brink, Phys. Rev. B 88, 195109 (2013)

    Article  ADS  Google Scholar 

  40. Y. Hasegawa, H. Nakano, T. Sakai, Phys. Rev. B 98, 014404 (2018)

    Article  ADS  Google Scholar 

  41. T. Lugan, L.D. Jaubert, A. Ralko, Phys. Rev. Res. 1, 033147 (2019)

    Article  Google Scholar 

  42. P.A. McClarty, M. Haque, A. Sen, J. Richter, Phys. Rev. B 102, 224303 (2020)

    Article  ADS  Google Scholar 

  43. T. Mizoguchi, Y. Kuno, Y. Hatsugai, Phys. Rev. B 104, 035161 (2021)

    Article  ADS  Google Scholar 

  44. N. Astrakhantsev, F. Ferrari, N. Niggemann, T. Müller, A. Chauhan, A. Kshetrimayum, P. Ghosh, N. Regnault, R. Thomale, J. Reuther, T. Neupert, Y. Iqbal, Phys. Rev. B 104, L220408 (2021)

    Article  ADS  Google Scholar 

  45. J. Richter, O. Derzhko, J. Schnack, Phys. Rev. B 105, 144427 (2022)

    Article  ADS  Google Scholar 

  46. H. Kikuchi, Y. Fujii, D. Takahashi, M. Azuma, Y. Shimakawa, T. Taniguchi, A. Matsuo, K. Kindo, J. Phys. 320, 012045 (2011)

    Google Scholar 

  47. A. Baniodeh, N. Magnani, Y. Lan, G. Buth, C.E. Anson, J. Richter, M. Affronte, J. Schnack, A.K. Powell, npj Quantum Mater. 3, 10 (2018)

    Article  ADS  Google Scholar 

  48. L. Heinze, R. Beltran-Rodriguez, G. Bastien, A.U.B. Wolter, M. Reehuis, J.-U. Hoffmann, K.C. Rule, S. Süllow, Physica B 536, 377 (2018)

    Article  ADS  Google Scholar 

  49. D.S. Inosov, Adv. Phys. 67, 149 (2018)

    Article  ADS  Google Scholar 

  50. V.P. Gnezdilov, Yu.G. Pashkevich, V.S. Kurnosov, O.V. Zhuravlev, D. Wulferding, P. Lemmens, D. Menzel, E.S. Kozlyakova, AYu. Akhrorov, E.S. Kuznetsova, P.S. Berdonosov, V.A. Dolgikh, O.S. Volkova, A.N. Vasiliev, Phys. Rev. B 99, 064413 (2019)

    Article  ADS  Google Scholar 

  51. L. Heinze, H.O. Jeschke, I.I. Mazin, A. Metavitsiadis, M. Reehuis, R. Feyerherm, J.-U. Hoffmann, M. Bartkowiak, O. Prokhnenko, A.U.B. Wolter, X. Ding, V.S. Zapf, C. Corvalán Moya, F. Weickert, M. Jaime, K.C. Rule, D. Menzel, R. Valenti, W. Brenig, S. Süllow, Phys. Rev. Lett. 126, 207201 (2021)

    Article  ADS  Google Scholar 

  52. K. Nawa, M. Avdeev, P. Berdonosov, A. Sobolev, I. Presniakov, A. Aslandukova, E. Kozlyakova, A. Vasiliev, I. Shchetinin, T.J. Sato, Sci. Rep. 11, 24049 (2021)

    Article  ADS  Google Scholar 

  53. T. Zhang, G.-B. Jo, Sci. Rep. 5, 16044 (2015)

    Article  ADS  Google Scholar 

  54. M. Fujihala, K. Morita, R. Mole, S. Mitsuda, T. Tohyama, S.-I. Yano, D. Yu, S. Sota, T. Kuwai, A. Koda, H. Okabe, H. Lee, S. Itoh, T. Hawai, T. Masuda, H. Sagayama, A. Matsuo, K. Kindo, S. Ohira-Kawamura, K. Nakajima, Nat. Commun. 11, 3429 (2020)

    Article  ADS  Google Scholar 

  55. O.V. Yakubovich, L.V. Shvanskaya, G.V. Kiriukhina, A.S. Volkov, O.V. Dimitrova, A.N. Vasiliev, Inorganic Chem. 60, 11450 (2021)

    Article  Google Scholar 

  56. B. Liu, Z. Zeng, A. Xu, Y. Sun, O. Yakubovich, L. Shvanskaya, S. Li, A. Vasiliev, Low-temperature specific-heat studies on two square-kagome antiferromagnets (2022) arXiv:2203.03804

  57. F. Monti, A. Sütö, Phys. Lett. A 156, 197 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  58. K. Kubo, Phys. Rev. B 48, 10552 (1993)

    Article  ADS  Google Scholar 

  59. T. Nakamura, K. Kubo, Phys. Rev. B 53, 6393 (1996)

    Article  ADS  Google Scholar 

  60. D. Sen, B.S. Shastry, R.E. Walstedt, R. Cava, Phys. Rev. B 53, 6401 (1996)

    Article  ADS  Google Scholar 

  61. A. Lohmann, H.-J. Schmidt, J. Richter, Phys. Rev. B 89, 014415 (2014)

    Article  ADS  Google Scholar 

  62. O. Menchyshyn, T. Krokhmalskii, and O. Derzhko, Simple-cubic-lattice spin-1/2 Heisenberg model within Green-function method, preprint Inst. Cond. Matt. Phys., Nat. Acad. Sci. of Ukraine, ICMP-14-01E (L’viv) (2014)

  63. Within the FTLM scheme the sum over an orthonormal basis in the partition function is replaced by a much smaller sum over \(R\) random vectors, see J. Jaklič and P. Prelovšek, Phys. Rev. B 49, 5065(R) (1994) and also J. Schnack, J. Richter, and R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020)

  64. L. Hulthén, Ark. Mat., Astron. Fys. 26 A 11, 1 (1938)

  65. M. Karbach, G. Müller, Comput. Phys. 11, 36 (1997)

    Article  ADS  Google Scholar 

  66. M. Karbach, K. Hu, G. Müller, Comput. Phys. 12, 565 (1998)

    Article  ADS  Google Scholar 

  67. M. Karbach, K. Hu, G. Müller, Introduction to the Bethe Ansatz III (2000) arXiv:cond-mat/0008018

  68. J. des Cloizeaux, J.J. Pearson, Phys. Rev. 128, 2131 (1962)

    Article  ADS  Google Scholar 

  69. M. Karbach, G. Müller, A.H. Bougourzi, A. Fledderjohann, K.-H. Mütter, Phys. Rev. B 55, 12510 (1997)

    Article  ADS  Google Scholar 

  70. A. Klauser, J. Mossel, J.-S. Caux, J. van den Brink, Phys. Rev. Lett. 106, 157205 (2011)

    Article  ADS  Google Scholar 

  71. A. Klümper, D.C. Johnston, Phys. Rev. Lett. 84, 4701 (2000)

    Article  ADS  Google Scholar 

  72. D.C. Johnston, R.K. Kremer, M. Troyer, X. Wang, A. Klümper, S.L. Bud’ko, A.F. Panchula, P.C. Canfield, Phys. Rev. B 61, 9558 (2000)

    Article  ADS  Google Scholar 

  73. D.J. Scalapino, Y. Imry, P. Pincus, Phys. Rev. B 11, 2042 (1975)

    Article  ADS  Google Scholar 

  74. H.J. Schulz, Phys. Rev. Lett. 77, 2790 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dieter Ihle, Patrick Müller, and Jürgen Schnack for comments and suggestions. We thank Taras Verkholyak and Stanislav Pidhorskyi for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Derzhko.

Appendix: Numerical solution of the self-consistent equations

Appendix: Numerical solution of the self-consistent equations

Fig. 8
figure 8

Numerical solution of Eq. (4.1) using (A.1) (solid) and (A.5) (dashed), see the text of appendix: (upper panel) \({\tilde{\alpha }}_{ij}\); (middle panel) \(\rho \), \(\alpha _1\), \(\alpha _2\); (lower panel) achieved values of the objective functions

Fig. 9
figure 9

Values of correlators \(\vert c_{ij}\vert \) as they follow by numerical solution of Eq. (4.1) using (A.1) (solid) and (A.5) (dashed). Gray straight lines correspond to high-temperature asymptotes

Fig. 10
figure 10

RGM results for thermodynamic quantities per site, (upper panel) e(T), (middle panel) c(T), (lower panel) s(T), cf. Fig. 3, as they follow by numerical solution of Eq. (4.1) using (A.1) (solid) and (A.5) (dashed)

Fig. 11
figure 11

RGM results for \(S_q\) at various temperatures, cf. Fig. 6, as they follow by numerical solution of Eq. (4.1) using (A.1) (solid) and (A.5) (dashed)

In this appendix, we discuss how to solve numerically the self-consistent equations reported in Sect. 4. To this end, we consider a six-dimensional space of values \(\xi _1\equiv {\tilde{\alpha }}_{10}\), \(\xi _2\equiv {\tilde{\alpha }}_{01}\), \(\xi _3\equiv {\tilde{\alpha }}_{20}\), \(\xi _4\equiv {\tilde{\alpha }}_{11}\), \(\xi _5\equiv {\tilde{\alpha }}_{02}\), and \(\xi _6\equiv \rho \), see Eq. (4.1). We introduce the (nonnegative) objective function [62]

$$\begin{aligned} {\mathfrak {F}}(\xi _1\!,\!\ldots \!,\!\xi _6)\!=\! & {} \!\left[ \!\xi _1\xi _6\!-\!\Xi _1(\!\xi _1\!,\!\ldots \!,\!\xi _6\!)\!\right] ^2 +\!\left[ \!\xi _2\!-\!\Xi _2(\!\xi _1\!,\!\ldots \!,\!\xi _6\!)\!\right] ^2 \nonumber \\&+\left[ \!\xi _3\xi _6\!-\!\Xi _3(\!\xi _1\!,\!\ldots \!,\!\xi _6\!)\!\right] ^2 \!+\!\left[ \!\xi _4\!-\!\Xi _4(\!\xi _1\!,\!\ldots \!,\!\xi _6\!)\!\right] ^2 \nonumber \\&+\left[ \!\xi _5\!-\!\Xi _5(\!\xi _1\!,\!\ldots \!,\!\xi _6\!)\!\right] ^2 \!+\!\left[ \Xi _6(\xi _1\!,\!\ldots \!,\!\xi _6)\right] ^2 \!\ge \!0\nonumber \\ \end{aligned}$$
(A.1)

with

$$\begin{aligned} \Xi _1(\xi _1\!,\!\ldots \!,\!\xi _6)=\frac{1}{2\pi }\!\int \limits _{-\pi }^{\pi }\!\!\!\mathrm{d}q \mathrm{e}^{\mathrm{i}q}\langle S_{q1}^-S_{q1}^+ \rangle _{{\tilde{\alpha }},\rho }, \nonumber \\ \vdots \nonumber \\ \Xi _{5}(\xi _1\!,\!\ldots \!,\!\xi _6)=\frac{1}{2\pi }\!\int \limits _{-\pi }^{\pi }\!\!\!\mathrm{d}q \mathrm{e}^{\mathrm{i}q}\langle S_{q2}^-S_{q2}^+ \rangle _{{\tilde{\alpha }},\rho }, \nonumber \\ \Xi _6(\xi _1\!,\!\ldots \!,\!\xi _6)=\frac{1}{2\pi }\!\!\int \limits _{-\pi }^{\pi }\!\!\!\mathrm{d}q\langle S_{q1}^- S_{q1}^+\rangle _{{\tilde{\alpha }},\rho }\! \!-\!\!\frac{1}{2\pi }\!\!\int \limits _{-\pi }^{\pi }\!\!\!\mathrm{d}q \langle S_{q2}^-S_{q2}^+ \rangle _{{\tilde{\alpha }},\rho },\nonumber \\ \end{aligned}$$
(A.2)

see Eqs. (4.1), (4.2). The objective function \({\mathfrak {F}}(\xi _1,\ldots ,\xi _6)\) can be evaluated according to Eqs. (A.1) and (A.2) for any point in the six-dimensional space \((\xi _1,\ldots ,\xi _6)\) presuming that \(\Xi _i(\xi _1,\ldots ,\xi _6)\), \(i=1,\ldots ,6\) exist. Obviously, \({\mathfrak {F}}\) defined in Eq. (A.1) vanishes at the point \((\xi _1^*,\ldots ,\xi _6^*)\) which corresponds to the solution of Eq. (4.1), i.e., \({\mathfrak {F}}(\xi _1^*,\ldots ,\xi _6^*)=0\). Importantly, the set of equations at hand [Eq. (4.1)] does not have a unique solution, i.e., we are interested in the physical one only, which should be discriminated from irrelevant ones.

We begin with a sufficiently high temperature T (e.g., \(T=50\) or \(T=100\)), when the correlation functions can be calculated using the asymptotic high-temperature values \(c_{10}=-J_1/(8T)\), \(c_{01}=-J_2/(8T)\), \(c_{20}=J_1^2/(32T^2)\), \(c_{11}=J_1J_2/(32T^2)\), \(c_{20}=J_2^2/(32T^2)\) and \(\rho =1\); these initial values are denoted as \(\xi _1^{(0)},\ldots ,\xi _6^{(0)}\) and \({\mathfrak {F}}(\xi _1^{(0)},\ldots ,\xi _6^{(0)})\ne 0\). However, if \((\xi _1^{(0)},\ldots ,\xi _6^{(0)})\) is quite close to \((\xi _1^{*},\ldots ,\xi _6^{*})\) the objective function \({\mathfrak {F}}(\xi _1,\ldots ,\xi _6)\) has (approximately) the form of a paraboloid in the seven-dimensional space around \((\xi _1^{(0)},\ldots ,\xi _6^{(0)})\), i.e.,

$$\begin{aligned} {\mathfrak {F}}(\xi _1,\ldots ,\xi _6)\!\approx & {} \!{{{\mathcal {F}}}}(\xi _1,\ldots ,\xi _6); \nonumber \\ {{{\mathcal {F}}}}(\xi _1,\ldots ,\xi _6)\!= & {} \!\sum _{i=1}^6\sum _{j=i}^6C_{ij}\left( \xi _i-\xi _i^*\right) \left( \xi _j-\xi _j^*\right) \!. \end{aligned}$$
(A.3)

Considering close points with \(\xi _1^{\pm }\!=\!\xi _1^{(0)}\!\pm \!\delta \xi _1/p\), ..., \(\xi _6^{\pm }\!=\!\xi _6^{(0)}\!\pm \!\delta \xi _6/p\), where \(\delta \xi _1,\ldots ,\delta \xi _5\) are (small) differences of the asymptotic high-temperature values at T and, e.g., at 1.01T, \(\delta \xi _6\) is, e.g., 0.001, whereas p is, e.g., 600, and using \({{{\mathcal {F}}}}(\xi _1,\ldots ,\xi _6) \approx {\mathfrak {F}}(\xi _1,\ldots ,\xi _6)\), we determine the coefficients \(C_{ij}\) in Eq. (A.3). Furthermore, we obtain the prediction for \(\xi _1^*,\ldots ,\xi _6^*\) from Eq. (A.3). The objective function \({\mathfrak {F}}\), in general, does not vanish at the determined point \((\xi _1^*,\ldots ,\xi _6^*)\) (since \({\mathfrak {F}}\) and \({{{\mathcal {F}}}}\), in general, are only approximately equal). We declare this point as the initial one, i.e., \(\xi _1^*\rightarrow \xi _1^{(0)},\ldots ,\xi _6^*\rightarrow \xi _6^{(0)}\), and repeat calculations. While seeking for the new coefficients \(C_{ij}\) and the new prediction for \(\xi _1^*,\ldots ,\xi _6^*\) we decrease \(\delta \xi _1/p\), ..., \(\delta \xi _6/p\) by factor 2. We repeat calculations (e.g., 10 times), evaluating the value of the objective function \({\mathfrak {F}}\) at this temperature T, see the solid line in the lower panel of Fig. 8, and its small values allow us to conclude that we have found the solution of Eq. (4.1) at the temperature T.

Next step is to decrease the temperature: \(T\rightarrow T-\Delta T\); \(\Delta T\) varies from 0.01 to \(0.000\,01\), see below. We do not use the asymptotic high-temperature values any more. Instead, we use the determined values \(\xi _1^*,\ldots ,\xi _6^*\) at the temperature T as the initial values \(\xi _1^{(0)},\ldots ,\xi _6^{(0)}\) for the lower temperature \(T-\Delta T\). Furthermore, \(\delta \xi _i\) now are the differences of \(\xi _i^{(0)}\) at \(T-\Delta T\) and \(\xi _i^{(0)}\) at T. This way we proceed approaching extremely low temperatures; simultaneously we observe the objective function \({\mathfrak {F}}\) which should be small enough. As can be seen in the lower panel of Fig. 8, \({\mathfrak {F}}\) is as small as \(10^{-40}\ldots 10^{-50}\) (solid curve) and thus evidences that we have found the solution of Eq. (4.1).

Few comments on the explained scheme of numerical solution of the self-consistent equations are in order here. First, the described procedure, which is based on the assumption about a paraboloid for the objective function (A.3), requires a reasonable amount of time on personal computer that is obviously an advantage in comparison with the numerical solution described in Ref.  [62] (seeking for the minimum of the objective function within a cuboid).

Second, at certain low temperature the described scheme may fail. What is the reason for that? We observed that it may occur because \(f_{-}\) [see Eq. (3.10)] becomes negative at the points of the six-dimensional space which are used to determine the coefficients \(C_{ij}\) in Eq. (A.3). Sometimes, this obstacle can be overcome by a change of the specific parameter values employed in the described scheme. Here we have arrived at the third comment, which regards a jump behavior of the solid curve in the lower panel of Fig. 8. The jumps are related to a change of the step \(\Delta T\): If the described scheme fails at some temperature, one may decrease \(\Delta T\) or increase p etc. and this may allow to proceed further decreasing the temperature. For example, we set \(\Delta T=0.01\) at high temperatures, but \(\Delta T=0.001\) while approaching \(T=1\), \(\Delta T=0.000\,1\) for \(T=1\ldots 0.1\) and \(\Delta T=0.000\,01\) below \(T=0.1\).

Fourth, it is worth noting that the second and the fourth equations (4.1) may be replaced by the physically equivalent ones

$$\begin{aligned} {\tilde{\alpha }}_{01}=\frac{1}{2\pi }\int \limits _{-\pi }^{\pi }\mathrm{d}q \langle S_{q1}^-S^+_{q2}\rangle _{{\tilde{\alpha }},\rho }, \nonumber \\ {\tilde{\alpha }}_{11}=\frac{1}{2\pi }\int \limits _{-\pi }^{\pi }\mathrm{d}q \mathrm{e}^{\mathrm{i}q} \langle S_{q1}^-S^+_{q2}\rangle _{{\tilde{\alpha }},\rho }, \end{aligned}$$
(A.4)

respectively. This simply corresponds to another possible choice of \(c_{01}=\langle S_{j,1}^-S_{j,2}^+\rangle \) and \(c_{11}=\langle S_{j,1}^-S_{j+1,2}^+\rangle \), see Fig. 1 and Eqs. (2.2) and (3.7). In these cases, however, the explained numerical scheme for the resulting set of self-consistent equations fails at higher temperatures and therefore they were discarded.

Finally, for the set \(J_1=3.294\), \(J_2=1\) we have detected the following problem. At high temperatures \({\tilde{\alpha }}_{02}\) is the smallest quantity and can be hardly controlled by the objective function (A.1). Therefore \(c_{02}\) does not follow (4.3) in the temperature range where other four correlators, \(c_{10}\), \(c_{01}\), \(c_{20}\), and \(c_{11}\), are quite close their high-temperature asymptotes (4.3). However, the correct high-temperature behavior of all correlators is inherent in the self-consistent Eq. (4.1): Fixing \(c_{02}\) by the relation \(c_{02}=2c_{01}^2\) which holds at high temperatures and utilizing the described numerical scheme now in a five-dimensional space we achieve the values of the objective function as small as \(10^{-20} \ldots 10^{-30}\).

Yet another comment is worth mentioning. In the beginning of appendix we introduce a six-dimensional space defining \(\xi _1,\ldots ,\xi _6\) and then apply the explained numerical scheme. However, another choice of the coordinates which describe the points of a six-dimensional space is also possible. More specifically, we may consider another six-dimensional space of values, \(\xi _1\equiv \rho {\tilde{\alpha }}_{10}\), \(\xi _2\equiv {\tilde{\alpha }}_{01}\), \(\xi _3\equiv \rho {\tilde{\alpha }}_{20}\), \(\xi _4\equiv {\tilde{\alpha }}_{11}\), \(\xi _5\equiv {\tilde{\alpha }}_{02}\), and \(\xi _6\equiv \rho \), and use the following objective functions:

$$\begin{aligned} {\mathfrak {F}}(\xi _1\!,\!\ldots \!,\!\xi _6) \!=\! \sum _{i=1}^{5}\!\left[ \!\xi _i\!-\!\Xi _i(\!\xi _1\!,\!\ldots \!,\!\xi _6\!)\!\right] ^2 \!+\!\left[ \Xi _6(\xi _1\!,\!\ldots \!,\!\xi _6)\right] ^2, \nonumber \\ \end{aligned}$$
(A.5)

where \(\Xi _i(\xi _i,\ldots ,\xi _6)\), \(i=1,\ldots ,6\) are defined in Eq. (A.2), see Eqs. (4.1), (4.2). As can be seen in Figs. 8 and 9, dashed curves, in such a case the high-temperature asymptote for \(c_{02}\) is reproduced better and this correlator has smaller values. However, the values of the objective function are much larger (dashed curve in the lower panel of Fig. 8). Thermodynamic quantities along with the static structure factor as they follow by numerical solution of Eq. (4.1) using (A.1) and (A.5) are compared in Figs. 10 and 11 (solid versus dashed curves). Although the results are different in detail (and correspond to a big difference of the objective function values) they look qualitatively quite similar.

Summarizing this appendix, we emphasize that a numerical solution of the self-consistent equations emerging after the Kondo–Yamaji approximation is an important ingredient of the RGM approach. While in the previous studies this issue has not been discussed in great detail, in the case of nonequivalent sites in the unit cell, when the number of equations increases, a controlled solving of this set of equations is vitally necessary to make possible a successful application of the RGM approach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutak, T., Krokhmalskii, T., Derzhko, O. et al. Quantum Heisenberg model on a sawtooth-chain lattice: rotation-invariant Green’s function method. Eur. Phys. J. B 95, 93 (2022). https://doi.org/10.1140/epjb/s10051-022-00359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00359-0

Navigation