Skip to main content
Log in

Thermodynamics of multiple Maxwell demons

  • Regular Article – Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In many assembly line processes like metabolic and signaling networks in biological systems, the products of the first enzyme are the reactant for the next enzyme in the network. Working of multiple machines leads to efficient utilization of resources. Motivated by this, we investigate if multiple Maxwell demons lead to more efficient information processing. We study the phase space of multiple demons acting on an information tape based on the model of Mandal and Jarzynski [1, 2]. Their model is analytically solvable and the phase space of the device has three regions: engine, where work is delivered by writing information to the tape, erasure, where work is performed on the device to erase information on the tape, and dud, when work is performed and, at the same time, the information is written to the tape. For identical demons, we find that the erasure region increases at the expense of the dud region, while the information engine region does not change appreciably. The efficiency of the multiple demon device increases with the number of demons in the device and saturates to the equilibrium (maximum) efficiency even at short cycle times for very large numbers of demons. By investigating a device with non-identical demons acting on a tape, we identify the demon parameters that control the different regions of the phase space. Our model is well suited to study information processing in assembly line systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. D. Mandal, C. Jarzynski, Work and information processing in a solvable model of maxwell’s demon. Proc. Natl. Acad. Sci. 109(29), 11641–11645 (2012)

    Article  ADS  Google Scholar 

  2. D. Mandal, H. Quan, C. Jarzynski, Maxwell’s refrigerator: an exactly solvable model. Phys. Rev. Lett. 111(3), 030602 (2013)

    Article  ADS  Google Scholar 

  3. J.C. Maxwell, Theory of heat (london (Longmans, UK, 1871)

    Google Scholar 

  4. L. Szilard, Über die entropieverminderung in einem thermodynamischen system bei eingriffen intelligenter wesen. Z. Phys. 53(11), 840–856 (1929)

    Article  ADS  Google Scholar 

  5. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  6. K. Proesmans, J. Ehrich, J. Bechhoefer, Finite-time landauer principle. Phys. Rev. Lett. 125, 100602 (2020). https://doi.org/10.1103/PhysRevLett.125.100602

    Article  ADS  Google Scholar 

  7. M. Esposito, C. Van den Broeck, Second law and landauer principle far from equilibrium. EPL (Europhysics Letters) 95(4), 40004 (2011)

    Article  ADS  Google Scholar 

  8. C.H. Bennett, The thermodynamics of computation-a review. Int. J. Theor. Phys. 21(12), 905–940 (1982)

    Article  Google Scholar 

  9. R.P. Feynman, T. Hey, R.W. Allen, Feynman Lectures on Computation. CRC Press, ??? (2018)

  10. O. Penrose, Foundations of Statistical Mechanics: a Deductive Treatment. Courier Corporation, (2005)

  11. T. Sagawa, M. Ueda, Generalized jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett. 104(9), 090602 (2010)

    Article  ADS  Google Scholar 

  12. J.M. Parrondo, J.M. Horowitz, T. Sagawa, Thermodynamics of information. Nat. Phys. 11(2), 131–139 (2015)

    Article  Google Scholar 

  13. D. Abreu, U. Seifert, Extracting work from a single heat bath through feedback. EPL (Europhysics Letters) 94(1), 10001 (2011)

    Article  ADS  Google Scholar 

  14. D. Abreu, U. Seifert, Thermodynamics of genuine nonequilibrium states under feedback control. Phys. Rev. Lett. 108(3), 030601 (2012)

    Article  ADS  Google Scholar 

  15. J.M. Horowitz, M. Esposito, Thermodynamics with continuous information flow. Phys. Rev. X 4(3), 031015 (2014)

    Google Scholar 

  16. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012)

    Article  ADS  Google Scholar 

  17. Y. Cao, Z. Gong, H. Quan, Thermodynamics of information processing based on enzyme kinetics: An exactly solvable model of an information pump. Phys. Rev. E 91(6), 062117 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Barato, U. Seifert, Unifying three perspectives on information processing in stochastic thermodynamics. Phys. Rev. Lett. 112(9), 090601 (2014)

    Article  ADS  Google Scholar 

  19. J.M. Horowitz, T. Sagawa, J.M. Parrondo, Imitating chemical motors with optimal information motors. Phys. Rev. Lett. 111(1), 010602 (2013)

    Article  ADS  Google Scholar 

  20. F.J. Cao, M. Feito, Thermodynamics of feedback controlled systems. Phys. Rev. E 79(4), 041118 (2009)

    Article  ADS  Google Scholar 

  21. F.J. Cao, L. Dinis, J.M. Parrondo, Feedback control in a collective flashing ratchet. Phys. Rev. Lett. 93(4), 040603 (2004)

    Article  ADS  Google Scholar 

  22. M. Ponmurugan, Generalized detailed fluctuation theorem under nonequilibrium feedback control. Phys. Rev. E 82(3), 031129 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. J.M. Horowitz, J.M. Parrondo, Thermodynamic reversibility in feedback processes. EPL (Europhysics Letters) 95(1), 10005 (2011)

    Article  Google Scholar 

  24. A. Kundu, Nonequilibrium fluctuation theorem for systems under discrete and continuous feedback control. Phys. Rev. E 86(2), 021107 (2012)

    Article  ADS  Google Scholar 

  25. A.C. Barato, U. Seifert, An autonomous and reversible maxwell’s demon. EPL (Europhysics Letters) 101(6), 60001 (2013)

    Article  ADS  Google Scholar 

  26. R. Kawai, J.M. Parrondo, C. Van den Broeck, Dissipation: The phase-space perspective. Phys. Rev. Lett. 98(8), 080602 (2007)

    Article  ADS  Google Scholar 

  27. J.M. Horowitz, S. Vaikuntanathan, Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. Phys. Rev. E 82(6), 061120 (2010)

    Article  ADS  Google Scholar 

  28. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Experimental demonstration of information-to-energy conversion and validation of the generalized jarzynski equality. Nat. Phys. 6(12), 988–992 (2010)

    Article  Google Scholar 

  29. J.V. Koski, V.F. Maisi, J.P. Pekola, D.V. Averin, Experimental realization of a szilard engine with a single electron. Proc. Natl. Acad. Sci. 111(38), 13786–13789 (2014)

    Article  ADS  Google Scholar 

  30. G. Paneru, D.Y. Lee, T. Tlusty, H.K. Pak, Lossless brownian information engine. Phys. Rev. Lett. 120(2), 020601 (2018)

    Article  ADS  Google Scholar 

  31. G. Paneru, S. Dutta, T. Sagawa, T. Tlusty, H.K. Pak, Efficiency fluctuations and noise induced refrigerator-to-heater transition in information engines. Nat. Commun. 11(1), 1–8 (2020)

    Article  Google Scholar 

  32. G. Paneru, S. Dutta, T. Tlusty, H.K. Pak, Reaching and violating thermodynamic uncertainty bounds in information engines. Phys. Rev. E 102(3), 032126 (2020)

    Article  ADS  Google Scholar 

  33. M.c.v. Gavrilov, J. Bechhoefer, Erasure without work in an asymmetric double-well potential. Phys. Rev. Lett. 117, 200601 (2016). https://doi.org/10.1103/PhysRevLett.117.200601

  34. Y. Tu, The nonequilibrium mechanism for ultrasensitivity in a biological switch: Sensing by maxwell’s demons. Proc. Natl. Acad. Sci. 105(33), 11737–11741 (2008)

    Article  ADS  Google Scholar 

  35. P. Sartori, L. Granger, C. Lee, J. Horowitz, PLoS Comput. Biol. 10, e1003974 (2014)

  36. S. Ito, T. Sagawa, Maxwell’s demon in biochemical signal transduction with feedback loop. Nat. Commun. 6(1), 1–6 (2015)

  37. D. Andrieux, P. Gaspard, Nonequilibrium generation of information in copolymerization processes. Proc. Natl. Acad. Sci. 105(28), 9516–9521 (2008)

    Article  ADS  Google Scholar 

  38. T. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109(7), 070501 (2012)

    Article  ADS  Google Scholar 

  39. K. Jacobs, Quantum measurement and the first law of thermodynamics: The energy cost of measurement is the work value of the acquired information. Phys. Rev. E 86(4), 040106 (2012)

    Article  ADS  Google Scholar 

  40. H. Quan, Y. Wang, Y.-X. Liu, C. Sun, F. Nori, Maxwell’s demon assisted thermodynamic cycle in superconducting quantum circuits. Phys. Rev. Lett. 97(18), 180402 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  41. V. Serreli, C.-F. Lee, E.R. Kay, D.A. Leigh, A molecular information ratchet. Nature 445(7127), 523–527 (2007)

    Article  ADS  Google Scholar 

  42. P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Thermodynamics of a physical model implementing a maxwell demon. Phys. Rev. Lett. 110(4), 040601 (2013)

    Article  ADS  Google Scholar 

  43. A.B. Boyd, D. Mandal, J.P. Crutchfield, Identifying functional thermodynamics in autonomous maxwellian ratchets. New J. Phys. 18(2), 023049 (2016)

    Article  ADS  Google Scholar 

  44. M. Thomas, A.T. Joy, Elements of Information Theory. Wiley-Interscience, (2006)

Download references

Acknowledgements

The authors acknowledge Birla Institute of Technology and Science, Pilani for funding the project through Research Initiation Grant (Serial No 189).

Author information

Authors and Affiliations

Authors

Contributions

SD conceived and designed the analysis, performed analysis, and wrote the paper.

Corresponding author

Correspondence to Sandipan Dutta.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S. Thermodynamics of multiple Maxwell demons. Eur. Phys. J. B 95, 131 (2022). https://doi.org/10.1140/epjb/s10051-022-00394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00394-x

Navigation